So I thought I was finally grasping snakemake, but when trying to run several different data files, I realized it doesn't work as I though. This is the Snakefile:
import pandas as pd
configfile: "config.json"
experiments = pd.read_csv(config["experiments"], sep = '\t')
experiments['Name'] = [filename.split('/')[-1].split('.fa')[0] for filename in experiments['Files']]
rule all:
input:
expand("{output}/Preprocess/Trimmomatic/quality_trimmed_{name}{fr}.fq", output = config["output"],
fr = (['_forward_paired', '_reverse_paired'] if experiments["Files"].str.contains(',').tolist() else ''),
name = experiments['Name'])
rule preprocess:
input:
experiments["Files"].str.split(',')
output:
expand("{output}/Preprocess/Trimmomatic/quality_trimmed_{name}{fr}.fq", output = config["output"],
fr = (['_forward_paired', '_reverse_paired'] if experiments["Files"].str.contains(',').tolist() else ''),
name = experiments['Name'])
threads:
config["threads"]
run:
shell("python preprocess.py -i {reads} -t {threads} -o {output} -adaptdir MOSCA/Databases/illumina_adapters -rrnadbs MOSCA/Databases/rRNA_databases -d {data_type}",
output = config["output"], data_type = experiments["Data type"].tolist(), reads = ",".join(input))
this is the config file:
{
"output": "test_snakemake",
"threads": 14,
"experiments": "experiments.tsv"
}
and this is the experiments file
Files Sample Data type Condition
path/to/mg_R1.fastq,path/to/mg_R2.fastq Sample dna
path/to/a/0.01/mt_0.01a_R1.fastq,path/to/a/0.01/mt_0.01a_R2.fastq Sample rna c1
path/to/b/0.01/mt_0.01b_R1.fastq,path/to/b/0.01/mt_0.01b_R2.fastq Sample rna c1
path/to/c/0.01/mt_0.01c_R1.fastq,path/to/c/0.01/mt_0.01c_R2.fastq Sample rna c1
path/to/a/1/mt_1a_R1.fastq,path/to/a/1/mt_1a_R2.fastq Sample rna c2
path/to/b/1/mt_1b_R1.fastq,path/to/b/1/mt_1b_R2.fastq Sample rna c2
path/to/c/1/mt_1c_R1.fastq,path/to/c/1/mt_1c_R2.fastq Sample rna c2
path/to/a/100/mt_100a_R1.fastq,path/to/a/100/mt_100a_R2.fastq Sample rna c3
path/to/b/100/mt_100b_R1.fastq,path/to/b/100/mt_100b_R2.fastq Sample rna c3
path/to/c/100/mt_100c_R1.fastq,path/to/c/100/mt_100c_R2.fastq Sample rna c3
What I want to do is have preprocess rule treat each row separately. I thought that was the way shell interpreted the command, and it would run the command python preprocess.py -i path/to/mg_R1.fastq,path/to/mg_R2.fastq -t 14 -o test_snakemake -adaptdir MOSCA/Databases/illumina_adapters -rrnadbs MOSCA/Databases/rRNA_databases -d dna
, instead it tries to join ALL rows and run this to all samples simultaneously python preprocess.py -i path/to/mg_R1.fastq,path/to/mg_R2.fastq,path/to/a/0.01/mt_0.01a_R1.fastq,path/to/a/0.01/mt_0.01a_R2.fastq,path/to/b/0.01/mt_0.01b_R1.fastq,path/to/b/0.01/mt_0.01b_R2.fastq,... -t 14 -o test_snakemake -adaptdir MOSCA/Databases/illumina_adapters -rrnadbs MOSCA/Databases/rRNA_databases -d dna rna rna rna rna rna rna rna rna rna
.
How can I make snakemake consider each row separately?
This is a very common mistake. The thing to remember is that rules should work for a single sample. Snakemake will take your paths (with wildcards) and generate specific jobs from the rules. You've written something that takes all inputs and all outputs, then I presume, preprocess.py expects one input/output.
Instead, consider one file at a time. For the output, "{output}/Preprocess/Trimmomatic/quality_trimmed_{name}{fr}.fq"
, how do you generate that file? You would have to match to an input file in your experiments dataframe using the name as a key.
def preprocess_input(wildcards):
# get files with matching names
df = experiments.loc[experiments['Name'] == wildcards.name, 'Files']
# get first value (in case multiple) and split on commas
return df.iloc[0].split(',')
rule preprocess:
input:
preprocess_input
output:
"{output}/Preprocess/Trimmomatic/quality_trimmed_{name}{fr}.fq"
threads:
config["threads"]
shell:
'python preprocess.py -i {reads} -t {threads} -o {config[output]} ...'
That uses an input function to find the correct input files from the output file. It's not perfect but should get you in the right direction.