i am trying to train my Sequential model but something goes wrong:
aspect_categories_model = Sequential()
aspect_categories_model.add(Dense(512, input_shape=(6000,), activation='relu'))
aspect_categories_model.add(Dense(5, activation='softmax'))
aspect_categories_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
when try to predict value with:
aspect_categories_model.fit(aspect_tokenized, dummy_category, epochs=5, verbose=1).
It got me a value error:
ValueError: Shapes (None, 6) and (None, 5) are incompatible
the code for dummies is:
from sklearn.preprocessing import LabelEncoder
from keras.utils import to_categorical
label_encoder = LabelEncoder()
integer_category = label_encoder.fit_transform(dataset.aspect_category)
dummy_category = to_categorical(integer_category)
the labels are 5.
The shape of dummy_category
is (batch_size, 6)
and the output shape of the model is (batch_size, 5)
.
Try changing the number of neurons in the final layer.
aspect_categories_model.add(Dense(6, activation='softmax'))
If you have only 5 categories for prediction then you have made some mistake in computing your dummy_category
variable.