I was solving a problem for pattern matching with hamming distance up to d for a DNA sequence. Regex saved me there. But now I've encountered a different problem. Given a long DNA sequence, I've to find most frequent mismatched k-mer with at most d mismatches. Here, k-mer refers to sub-sequence of length k.
Note: DNA sequence can be represented by only using four letters: {A, C, G, T}
For example,
DNA sequence= "AGGC"
k = 3
d = 1
Here, only two k-mers are possible: "AGG", "GGC"
Now, I can permute them individually with 1 mismatches by running following code for "AGG" and "GGC"
def permute_one_nucleotide(motif, alphabet={"A", "C", "G", "T"}):
import itertools
return list(
set(
itertools.chain.from_iterable(
[
[
motif[:pos] + nucleotide + motif[pos + 1 :]
for nucleotide in alphabet
]
for pos in range(len(motif))
]
)
)
)
"AGG" will give:
['TGG', 'ATG', 'AGG', 'GGG', 'AGT', 'CGG', 'AGC', 'AGA', 'ACG', 'AAG']
And, "GCC" will give:
['GCC', 'GAC', 'GGT', 'GGA', 'AGC', 'GTC', 'TGC', 'CGC', 'GGG', 'GGC']
Then I can use Counter
to find most frequent k-mer. But, this only works if d = 1
. How to generalize this for any d <= k
?
This is computationally expensive method. But yeah should fetch desired. What I did here is calculate all mismatch with hamming dist 1. then compute new mismatch with ham dist 1 from prev mismatch and recurse till d.
import itertools
all_c=set('AGCT')
other = lambda x : list(all_c.difference(x))
def get_changed(sub, i):
return [sub[0:i]+c+sub[i+1:] for c in other(sub[i])]
def get_mismatch(d, setOfMmatch):
if d==0:
return setOfMmatch
newMmatches=[]
for sub in setOfMmatch:
newMmatches.extend(list(map(lambda x : ''.join(x), itertools.chain.from_iterable(([get_changed(sub, i) for i, c in enumerate(sub)])))))
setOfMmatch=setOfMmatch.union(newMmatches)
return get_mismatch(d-1, setOfMmatch)
dna='AGGC'
hamm_dist=1
length=3
list(itertools.chain.from_iterable([get_mismatch(hamm_dist, {dna[i:i+length]}) for i in range(len(dna)-length+1)]))
# without duplicates
# set(itertools.chain.from_iterable([get_mismatch(hamm_dist, {dna[i:i+length]}) for i in range(len(dna)-length+1)]))
found a better performance code almost 10-20X faster
%%time
import itertools, random
from cacheout import Cache
import time
all_c=set('AGCT')
get_other = lambda x : list(all_c.difference(x))
other={}
for c in all_c:
other[c]=get_other(c)
def get_changed(sub, i):
return [sub[0:i]+c+sub[i+1:] for c in other[sub[i]]]
mmatchHash=Cache(maxsize=256*256, ttl=0, timer=time.time, default=None)
def get_mismatch(d, setOfMmatch):
if d==0:
return setOfMmatch
newMmatches=[]
for sub in setOfMmatch:
newMmatches.extend(list(map(lambda x : ''.join(x), itertools.chain.from_iterable(([get_changed(sub, i) for i, c in enumerate(sub)])))))
setOfMmatch=setOfMmatch.union(newMmatches)
if not mmatchHash.get((d-1, str(setOfMmatch)), 0):
mmatchHash.set((d-1, str(setOfMmatch)), get_mismatch(d-1, setOfMmatch))
return mmatchHash.get((d-1, str(setOfMmatch)))
length_of_DNA=1000
dna=''.join(random.choices('AGCT', k=length_of_DNA))
hamm_dist=4
length=9
len(list(itertools.chain.from_iterable([get_mismatch(hamm_dist, {dna[i:i+length]}) for i in range(len(dna)-length+1)])))
# set(itertools.chain.from_iterable([get_mismatch(hamm_dist, {dna[i:i+length]}) for i in range(len(dna)-length+1)]))
CPU times: user 1min 32s, sys: 1.81 s, total: 1min 34s Wall time: 1min 34s