I've been searching for a while what are for square-brackets in an addressed-of pointer, but I continue without understanding it. Here are the lines of the function, where "id" variable is an uint32_t pointer that has been previously passed as an argument.
#define LIST_STARTED (0x0001) /*defined out of the function*/
#define LIST_FIRST (0x0002) /*defined out of the function*/
uint32_t *pointer = id;
uint16_t *flags = &((uint16_t *)pointer)[0];
uint16_t *index = &((uint16_t *)pointer)[1];
bool started = *flags & LIST_STARTED;
bool first = *flags & LIST_FIRST;
if (!started){
/* does something */
*flags = MSEC_PRM_MGMT_LIST_STARTED;
return true;
}
if (!first){
/* does something */
*flags |= MSEC_PRM_MGMT_LIST_FIRST;
*index = 1;
return true;
}
if (*index == final_index)
/* does something */
return false;
*index += 1;
I understand what the logic of the function is, but I don't understand what do the following lines. I put "all" the code above in case it helps you.
uint16_t *flags = &((uint16_t *)pointer)[0];
uint16_t *index = &((uint16_t *)pointer)[1];
I would appreciate if someone could help me! Thank you!
I edit to say that this C code works fine in an Embedded System, I'm not modifying it, I was just watching its behaviour.
The following code tries to read a uint32_t
object as an array of two uint16_t
objects:
uint32_t *id = ...;
uint32_t *pointer = id;
uint16_t *flags = &((uint16_t *)pointer)[0];
uint16_t *index = &((uint16_t *)pointer)[1];
and that is undefined behaviour to read a uint32_t
object as 2 uint16_t
objects through flags
and index
pointers because that breaks strict aliasing rules.
The correct way is:
uint16_t flags = *id; // The lowest order bits of id.
uint16_t index = *id >> 16; // The highest order bits of id.
In the above assignments of uint32_t
to uint16_t
it truncates the highest order bits of id
.