I'm using a lambda function in a pandas aggregation to calculate the weighted average. My issue is that if one of the values is nan, the whole result is nan of that group. How can I avoid this?
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns = ['one', 'two', 'three'])
df['four'] = 'bar'
df['five'] = df['one'] > 0
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
df.loc['b','four'] ='foo'
df.loc['c','four'] ='foo'
one two three four five found
a 1.046540 -0.304646 -0.982008 bar True NaN
b NaN NaN NaN foo NaN foo
c -1.086525 1.086501 0.403910 foo False NaN
d NaN NaN NaN NaN NaN NaN
e 0.569420 0.105422 0.192559 bar True NaN
f 0.384400 -0.558321 0.324624 bar True NaN
g NaN NaN NaN NaN NaN NaN
h 0.656231 -2.185062 0.180535 bar True NaN
df.groupby('four').agg(sum=('two','sum'), weighted_avg=('one', lambda x: np.average(x, weights=df.loc[x.index, 'two'])))
sum weighted_avg
four
bar -2.942608 0.648173
foo 1.086501 NaN
desired result:
sum weighted_avg
four
bar -2.942608 0.648173
foo 1.086501 -1.086525
Unlike this question, this is not the problem that the actual value of the column does not appear, it's a problem of nanmean not having a weighting option.
Another numerical example:
x y
0 NaN 18.0
1 NaN 21.0
2 NaN 38.0
3 56.0 150.0
4 65.0 154.0
Here we would wnat to just return the weighted average of the two last rows and ignore the other rows that contain nan.
This appears to be more robust:
def f(x):
indices = (~np.isnan(x)) & (~np.isnan(df[weight_column]))[x.index]
try:
return np.average(x[indices], weights=df.loc[x.index[indices], weight_column])
except ZeroDivisionError:
return np.nan
df = df.groupby('four').agg(sum=('two','sum'), weighted_avg=('one', f))