I need to perform a PCA per image over a image collection. Then, I want to only keep Principle component axis 1, and add this as a band to every image within my image collection. Ultimately, I want to export a .csv file with GPS sampling locations at row headers and image ID as column headers with mean Principle component axis 1 as values. The idea behind doing this, is that I want a proxy (spectral heterogeneity) to use in further statistical analysis in R.
Here is the code I have thus far:
//Create an test image to extract information to be used during PCA
var testImage =ee.Image('LANDSAT/LC08/C01/T1_SR/LC08_168080_20130407')
.select(['B2', 'B3', 'B4', 'B5', 'B6', 'B7'],
['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2']);
// Define variables for PCA
var region = Extent;
var scale = testImage.projection().nominalScale();
var bandNames = testImage.bandNames();
Map.centerObject(region);
// Function for performing PCA
function doPCA(image){
// This code is from https://code.earthengine.google.com/7249153a8a0f5c79eaf562ed45a7adad
var meanDict = image.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: region,
scale: scale,
maxPixels: 1e9
});
var means = ee.Image.constant(meanDict.values(bandNames));
var centered = image.subtract(means);
// This helper function returns a list of new band names.
var getNewBandNames = function(prefix) {
var seq = ee.List.sequence(1, bandNames.length());
return seq.map(function(b) {
return ee.String(prefix).cat(ee.Number(b).int());
});
};
// [START principal_components]
var getPrincipalComponents = function(centered, scale, region) {
var arrays = centered.toArray();
var covar = arrays.reduceRegion({
reducer: ee.Reducer.centeredCovariance(),
geometry: region,
scale: scale,
maxPixels: 1e9
});
var covarArray = ee.Array(covar.get('array'));
var eigens = covarArray.eigen();
var eigenValues = eigens.slice(1, 0, 1);
var eigenVectors = eigens.slice(1, 1);
var arrayImage = arrays.toArray(1);
var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage);
var sdImage = ee.Image(eigenValues.sqrt())
.arrayProject([0]).arrayFlatten([getNewBandNames('sd')]);
return principalComponents
.arrayProject([0])
.arrayFlatten([getNewBandNames('pc')])
.divide(sdImage);
};
var pcImage = getPrincipalComponents(centered, scale, region);
return (pcImage);
}
// map PCA function over collection
var PCA = LandsatCol.map(function(image){return doPCA(image)});
print('pca', PCA);
Extent
is my ROI, whereas LandsatCol
is a preproccessed image collection. The code here produces an Error when trying to map the PCA over the image collection (second last line of code). The error reads: "Array: Parameter 'values' is required".
Any suggestions on how to deal with this? And how to add Principle component axis 1 as a band per image over the image collection?
I figured it out. The error "Array: Parameter 'values' is required" had to do with sparse matrices, which was a product of filtering, clipping and spesifying regions within to perform PCA. Earth Engine can not work with sparse matrices.
Here is the working code. LandsatCol
is my preproccessed image collection.
// Display AOI
var point = ee.Geometry.Point([30.2261, -29.458])
Map.centerObject(point,10);
// Prepairing imagery for PCA
var Preped = LandsatCol.map(function(image){
var orig = image;
var region = image.geometry();
var scale = 30;
var bandNames = ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2'];
var meanDict = image.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: region,
scale: scale,
maxPixels: 1e9
});
var means = ee.Image.constant(meanDict.values(bandNames));
var centered = image.subtract(means);
var getNewBandNames = function(prefix) {
var seq = ee.List.sequence(1, 6);
return seq.map(function(b) {
return ee.String(prefix).cat(ee.Number(b).int());
});
};
// PCA function
var getPrincipalComponents = function(centered, scale, region) {
var arrays = centered.toArray();
var covar = arrays.reduceRegion({
reducer: ee.Reducer.centeredCovariance(),
geometry: region,
scale: scale,
maxPixels: 1e9
});
var covarArray = ee.Array(covar.get('array'));
var eigens = covarArray.eigen();
var eigenValues = eigens.slice(1, 0, 1);
var eigenVectors = eigens.slice(1, 1);
var arrayImage = arrays.toArray(1);
var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage);
var sdImage = ee.Image(eigenValues.sqrt())
.arrayProject([0]).arrayFlatten([getNewBandNames('sd')]);
return principalComponents.arrayProject([0])
.arrayFlatten([getNewBandNames('pc')])
.divide(sdImage);
};
var pcImage = getPrincipalComponents(centered, scale, region);
return ee.Image(image.addBands(pcImage));
});
print("PCA imagery: ",Preped);