Here a very basic model :
class LinearDeepQNetwork(nn.Module):
def __init__(self, lr, n_actions, input_dims):
super(LinearDeepQNetwork, self).__init__()
self.fc1 = nn.Linear(*input_dims, 128)
self.fc2 = nn.Linear(128, n_actions)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
self.loss = nn.MSELoss()
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self, state):
layer1 = F.relu(self.fc1(state))
actions = self.fc2(layer1)
return actions
Be aware that I am using Pytorch
, not Keras
or Tensorflow
. In my Agent()
class, I instantiate self.Q_eval = LinearDeepQNetwork(self.lr, self.n_actions, self.input_dims)
. Once I have trained my agent for several episodes, I need to output the weights of self.Q_eval
. How can I do that?
I needed to inject the weights from Q_eval
network to Q_next
network. I made the following function :
def replace_target_network(self):
self.Q_next.load_state_dict(self.Q_eval.state_dict())
self.Q_next.eval()
Answer I can get the weights with Q_eval.state_dict()
.