I would like to make an table for my problem via r. The code is bellow:
#database
df<-structure(list(Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9,
+ -23.9, -23.9, -23.9, -23.9, -23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7,
+ -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364,
+ 175, 175, 350, 45.5, 54.6)), class = "data.frame", row.names = c(NA, -19L))
Q1<-matrix(quantile(df$Waste, probs = 0.25))
df_Q1<-subset(df,Waste>Q1[1])
#cluster
d<-dist(df_Q1)
fit.average<-hclust(d,method="average")
clusters<-cutree(fit.average,k=4)
df_Q1$cluster<-clusters
dc<-aggregate(df_Q1[,"Waste"],list(cluster=clusters),sum)
colnames(dc)<-c("cluster","Sum_Waste")
dd<-aggregate(df_Q1[,"Waste"],list(cluster=clusters),mean)
colnames(dd)<-c("cluster","Mean_Waste")
Thanks!
The Sum_Waste
and Mean_Waste
can be merged with your df_Q1
data frame for the final table.
I was not sure what output you were considering, but one method with kableExtra
will merge cells with identical values in designated columns. Hope this is helpful.
Edit: Added properties
to table. Rows are now sorted by cluster and properties.
library(kableExtra)
#database
df<-structure(list(Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9,
+ -23.9, -23.9, -23.9, -23.9, -23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7,
+ -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364,
+ 175, 175, 350, 45.5, 54.6)), class = "data.frame", row.names = c(NA, -19L))
Q1<-matrix(quantile(df$Waste, probs = 0.25))
df_Q1<-subset(df,Waste>Q1[1])
df_Q1
#cluster
d<-dist(df_Q1)
fit.average<-hclust(d,method="average")
clusters<-cutree(fit.average,k=4)
df_Q1$cluster<-clusters
df_Q1$properties<-names(clusters)
#calculate sum waste
dc<-aggregate(df_Q1[,"Waste"],list(cluster=clusters),sum)
colnames(dc)<-c("cluster","Sum_Waste")
head(dc)
#calculate mean waste
dd<-aggregate(df_Q1[,"Waste"],list(cluster=clusters),mean)
colnames(dd)<-c("cluster","Mean_Waste")
head(dd)
#merge everything
df_table <- Reduce(merge, list(df_Q1, dc, dd))
#make table
kable(df_table[order(df_table$cluster, as.numeric(df_table$properties)),c(5,2,3,4,1,6,7)], align = "c", row.names = FALSE) %>%
kable_styling(full_width = FALSE) %>%
column_spec(1, bold = TRUE) %>%
collapse_rows(columns = 5:7, valign = "middle")
Edit (4/18/20)
To aggregate properties
in a single row, with comma separation, try:
#sort properties
df_table <- df_table[order(df_table$cluster, as.numeric(df_table$properties)),]
#second table aggregated properties
df_table2 <- aggregate(. ~ cluster + Sum_Waste + Mean_Waste, df_table[,c(1,5,6,7)], toString)
#make table with df_table2
kable(df_table2[order(df_table2$cluster), c(4,1,2,3)], align = "c", row.names = FALSE) %>%
kable_styling(full_width = FALSE)