I have a function that takes in 7 (keyword) arguments, each with its type specified and the last one having a default value, like so:
function dummy(;truefalse1::S, somevar1::T, somevar2::T, somevar3::T, somevar4::T,
scalarvar::Int64, truefalse2::D = falses(3, 3)) where {
T <: Union{Array{Float64,2}, SubArray{Float64, 2}},
S <: AbstractArray{Bool}, D <: AbstractArray{Bool}}
###
end
The truefalse*
arguments can either be 2-dimensional boolean arrays (BitArray{2}) or a view of it (e.g. view(somearray, 2:4, 3:5)
). The somevar*
arguments can either be 2-dimensional arrays of type Float64 or the "view
" of such an array.
The above works, but this seemingly equivalent version does not (see below for test input):
function dummy(;truefalse1::S, somevar1::T, somevar2::T, somevar3::T, somevar4::T,
scalarvar::Int64, truefalse2::S = falses(3, 3)) where {
T <: Union{Array{Float64,2}, SubArray{Float64, 2}},
S <: AbstractArray{Bool}}
###
end
(In other words, the D
type has been removed, using the S
type for both occurrences.)
The error message is as follows:
ERROR: MethodError: no method matching #dummy#823(::SubArray{Bool,2,BitArray{2},Tuple{UnitRange{Int64},UnitRange{Int64}},false}, ::SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false}, ::SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false}, ::SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false}, ::SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false}, ::Int64, ::BitArray{2}, ::typeof(wheretonext))
Closest candidates are:
#dummy#823(::S, ::T, ::T, ::T, ::T, ::Int64, ::S, ::typeof(dummy)) where {T<:Union{Array{Float64,2}, SubArray{Float64,2,P,I,L} where L where I where P}, S<:(AbstractArray{Bool,N} where N)} at /SomePath/someDummyCode.jl:238
Stacktrace:
[1] (::var"#kw##dummy")(::NamedTuple{(:truefalse1, :somevar1, :somevar2, :somevar3, :somevar4, :scalarvar),Tuple{SubArray{Bool,2,BitArray{2},Tuple{UnitRange{Int64},UnitRange{Int64}},false},SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false},SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false},SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false},SubArray{Float64,2,Array{Float64,2},Tuple{UnitRange{Int64},UnitRange{Int64}},false},Int64}}, ::typeof(dummy)) at ./none:0
[2] top-level scope at none:0
Here is a sample set of test input:
julia> using Random; Random.seed!(1234);
julia> trf1 = rand(5, 10) .> rand(5, 10); trf2 = rand(5, 10) .> rand(5, 10);
julia> smv1 = rand(5, 10); smv2 = rand(5, 10); smv3 = rand(5, 10); smv4 = rand(5, 10);
These cases produce the aforementioned error using the second function declaration:
julia> dummy(truefalse1 = view(trf1, 2:4, 3:5), somevar1 = view(smv1, 2:4, 3:5),
somevar2 = view(smv2, 2:4, 3:5), somevar3 = view(smv3, 2:4, 3:5),
somevar4 = view(smv4, 2:4, 3:5), scalarvar = 1)
julia> dummy(truefalse1 = view(trf1, 2:4, 3:5), somevar1 = view(smv1, 2:4, 3:5),
somevar2 = view(smv2, 2:4, 3:5), somevar3 = view(smv3, 2:4, 3:5),
somevar4 = view(smv4, 2:4, 3:5), scalarvar = 1, truefalse2 = falses(3, 3))
However, still using the second function declaration, this case works fine:
julia> dummy(truefalse1 = view(trf1, 2:4, 3:5), somevar1 = view(smv1, 2:4, 3:5),
somevar2 = view(smv2, 2:4, 3:5), somevar3 = view(smv3, 2:4, 3:5),
somevar4 = view(smv4, 2:4, 3:5), scalarvar = 1, truefalse2 = view(trf2, 2:4, 3:5))
(Recall: All the above test cases work fine with the first function declaration.)
I would greatly appreciate any suggestions on what might I have done wrong or what might be the relevant subtleties in the Julia language. This is my second week coding in Julia, so I also welcome any other tips. Thank you!
This is because in the first definition, you let truefalse1
and truefalse2
have different types S
and D
, both types being subtypes of AbstractArray{Bool}
. Whereas in the second definition, truefalse1
and truefalse2
must have the same type S
(with the constraint that S
be a subtype of AbstractArray{Bool}
).
The documentation for Parametric Methods should explain this in more details, but maybe the the following, more minimal example can help get you a grasp of how things work:
# a and b can be of different types
function foo(a::S, b::T) where {
S<:AbstractArray{Bool},
T<:AbstractArray{Bool}}
end
# a and b must have the same type
function bar(a::S, b::S) where {
S<:AbstractArray{Bool}}
end
# test data
a = rand(Bool, 10); # Array
b = rand(Bool, 10); # Array
c = view(b, 1:5); # SubArray
The following calls all work:
# OK because:
# - typeof(a) == Array{Bool,1} <: AbstractArray{Bool}
# - typeof(b) == Array{Bool,1} <: AbstractArray{Bool}
# => substitute S for Array{Bool,1} and T for Array{Bool,1}
julia> foo(a, b)
# OK because:
# typeof(a) == typeof(b) == Array{Bool,1} <: AbstractArray{Bool}
# => substitute S for Array{Bool,1}
julia> bar(a, b)
# OK because:
# - a isa Array{Bool,1} <: AbstractArray
# - c isa SubArray{Bool,...} <: AbstractArray{Bool}
# => substitute S for Array{Bool,1} and T for SubArray{Bool,...}
julia> foo(a, c)
# Not OK because typeof(a) != typeof(b)
# there is no concrete type S such that
# - a isa S
# - b isa S
# - S <: AbstractArray
# => Method does not match
julia> bar(a, c)
ERROR: MethodError: no method matching bar(::Array{Bool,1}, ::SubArray{Bool,1,Array
{Bool,1},Tuple{UnitRange{Int64}},true})
Closest candidates are:
bar(::S, ::S) where S<:(AbstractArray{Bool,N} where N) at REPL[2]:3
Stacktrace:
[1] top-level scope at REPL[9]:1