I'm implementing a graph class, with each vertex having a Label of not necessarily the same type. I want the user to be able to provide any Labels (at compile time), without the Graph or the Vertex to know what the type is. For this, I used templated polymorphism, which I've hidden inside a Label class, in order for the Labels to have value semantics. It works like a charm and the relevant code is this (ignore the commented parts for now):
//Label.hpp:
#include <memory>
class Label {
public:
template<class T> Label(const T& name) : m_pName(new Name<T>(name)) {}
Label(const Label& other) : m_pName(other.m_pName->copy()) {}
// Label(const Label& other, size_t extraInfo) : m_pName(other.m_pName->copyAndAddInfo(extraInfo)) {}
bool operator==(const Label& other) const { return *m_pName == *other.m_pName; }
private:
struct NameBase {
public:
virtual ~NameBase() = default;
virtual NameBase* copy() const = 0;
// virtual NameBase* copyAndAddInfo(size_t info) const = 0;
virtual bool operator==(const NameBase& other) const = 0;
};
template<class T> struct Name : NameBase {
public:
Name(T name) : m_name(std::move(name)) {}
NameBase* copy() const override { return new Name<T>(m_name); }
// NameBase* copyAndAddInfo(size_t info) const override {
// return new Name<std::pair<T, size_t>>(std::make_pair(m_name, info));
// }
bool operator==(const NameBase& other) const override {
const auto pOtherCasted = dynamic_cast<const Name<T>*>(&other);
if(pOtherCasted == nullptr) return false;
return m_name == pOtherCasted->m_name;
}
private:
T m_name;
};
std::unique_ptr<NameBase> m_pName;
};
One requirement of the user (aka me) is to be able to create disjoint unions of Graphs (he is already able to create dual Graphs, unions of Graphs (where vertices having the same Label, are mapped to the same vertex), etc.). The wish is that the labels of the new Graph are pairs of the old label and some integer, denoting from which graph the label came (this also ensures that the new labels are all different). For this, I thought that I could use the commented parts of the Label class, but the problem that my g++17 compiler has, is that the moment I define the first Label with some type T, it tries to instantiate everything that could be used:
Name<T>, Name<std::pair<T, size_t>>, Name<std::pair<std::pair<T, size_t>, size_t>>, ...
Try for example to compile this (just an example, that otherwise works):
// testLabel.cpp:
#include "Label.hpp"
#include <vector>
#include <iostream>
int main() {
std::vector<Label> labels;
labels.emplace_back(5);
labels.emplace_back(2.1);
labels.emplace_back(std::make_pair(true, 2));
Label testLabel(std::make_pair(true, 2));
for(const auto& label : labels)
std::cout<<(label == testLabel)<<std::endl;
return 0;
}
The compilation just freezes. (I do not get the message "maximum template recursion capacity exceeded", that I saw others get, but it obviously tries to instantiate everything). I've tried to separate the function in another class and explicitly initialize only the needed templates, in order to trick the compiler, but with no effect.
The desired behaviour (I do not know if possible), is to instantiate the used template classes (together with the member function declarations), but define the member functions lazily, i.e. only if they really get called. For example, if I call Label(3)
, there should be a class Name<int>
, but the function
NameBase* Name<int>::copyAndAddInfo(size_t info) const;
shall only be defined if I call it, at some point. (thus, the Name<std::pair<int, size_t>>
is only going to be instantiated on demand)
It feels like something which should be doable, since the compiler already defines templated functions on demand.
An idea whould be to completely change the implementation and use variants, but
Does anyone have any hints on how I could solve this problem?
To directly answer your question, the virtual and template combo makes it impossible for the compiler to lazily implement the body copyAndAddInfo
. The virtual base type pointer hides the type information, so when the compiler sees other.m_pName->copyAndAddInfo
, it couldn't know what type it needs to lazily implement.
EDIT:
Ok, so based on your rationale for using templates, it seems like you only want to accept labels of different types, and might not actually care if the disjoint union information is part of the type. If that's the case, you could move it from the name to the label, and make it run-time information:
class Label {
public:
template<class T> Label(const T& name) : m_pName(new Name<T>(name)) {}
Label(const Label& other) : m_pName(other.m_pName->copy()), m_extraInfo(other.m_extraInfo) { }
Label(const Label& other, size_t extraInfo) : m_pName(other.m_pName->copy()), m_extraInfo(other.m_extraInfo) {
m_extraInfo.push_back(extraInfo);
}
bool operator==(const Label& other) const {
return *m_pName == *other.m_pName && std::equal(
m_extraInfo.begin(), m_extraInfo.end(),
other.m_extraInfo.begin(), other.m_extraInfo.end()); }
private:
struct NameBase { /* same as before */ };
std::vector<size_t> m_extraInfo;
std::unique_ptr<NameBase> m_pName;
};
If the disjoint union info being part of the type is important, than please enjoy my original sarcastic answer below.
ORIGINAL ANSWER:
That said, if you're willing to put a cap on the recursion, I have an evil solution for you that works for up to N levels of nesting: use template tricks to count the level of nesting. Then use SFINAE to throw an error after N levels, instead of recursing forever.
First, to count the levels of nesting:
template <typename T, size_t Level>
struct CountNestedPairsImpl
{
static constexpr size_t value = Level;
};
template <typename T, size_t Level>
struct CountNestedPairsImpl<std::pair<T, size_t>, Level> : CountNestedPairsImpl<T, Level + 1>
{
using CountNestedPairsImpl<T, Level + 1>::value;
};
template <typename T>
using CountNestedPairs = CountNestedPairsImpl<T, 0>;
Then, use std::enable_if<>
to generate different bodies based on the nesting level:
constexpr size_t NESTING_LIMIT = 4;
NameBase* copyAndAddInfo(size_t info) const override {
return copyAndAddInfoImpl(info);
}
template <typename U = T, typename std::enable_if<CountNestedPairs<U>::value < NESTING_LIMIT, nullptr_t>::type = nullptr>
NameBase* copyAndAddInfoImpl(size_t info) const {
return new Name<std::pair<T, size_t>>(std::make_pair(m_name, info));
}
template <typename U = T, typename std::enable_if<CountNestedPairs<U>::value >= NESTING_LIMIT, nullptr_t>::type = nullptr>
NameBase* copyAndAddInfoImpl(size_t info) const {
throw std::runtime_error("too much disjoint union nesting");
}
Why did I call this evil? It's going to generate every possible level of nesting allowed, so if you use NESTING_LIMIT=20
it will generate 20 classes per label type. But hey, at least it compiles!