Following Adam Chlipala's definition of heterogeneous lists, I wanted to define an equivalent of the Forall
function on normal lists. This isn't too difficult, and you end up with two constructors as usual. Now suppose that I know that a fact is true about every element of a non-empty list. With normal lists, I could use Forall_inv
and Forall_inv_tail
to assert that it's true about the head and tail of the list.
I'd like to prove the equivalent for hForall
as defined below, starting with the head case. Looking at the source in Lists/List.v, the proof for normal lists is easy and runs by inversion on Forall (a :: l)
. The equivalent for my hForall
gives a mess of dependent variables. Am I missing something obvious?
Require Import List.
Section hlist.
Variable A : Type.
Variable B : A -> Type.
Inductive hlist : list A -> Type :=
| HNil : hlist nil
| HCons {a : A} {ls : list A} : B a -> hlist ls -> hlist (a :: ls).
Section hForall.
Variable P : forall a : A, B a -> Prop.
Inductive hForall : forall {As : list A}, hlist As -> Prop :=
| hForall_nil : hForall HNil
| hForall_cons {a : A} {ls : list A} (x : B a) (hl : hlist ls)
: P a x -> hForall hl -> hForall (HCons x hl).
Lemma hForall_inv
(a : A)
(ls : list A)
(x : B a)
(hl : hlist ls)
: hForall (HCons x hl) -> P a x.
Proof.
(* Help! *)
Abort.
End hForall.
End hlist.
Inductives indexed by indexed types lead to that kind of difficulty.
Alternatively, consider defining hForall
as a Fixpoint
. Then the inversion lemma follows by just unfolding the definition.
Section hForall'.
Variable P : forall a, B a -> Prop.
Fixpoint hForall' {As : list A} (hs : hlist As) : Prop :=
match hs with
| HNil => True
| HCons x js => P _ x /\ hForall' js
end.
Lemma hForall'_inv
(a : A)
(ls : list A)
(x : B a)
(hl : hlist ls)
: hForall' (HCons x hl) -> P a x.
Proof.
intros []; auto.
Qed.
End hForall'.
Mostly for educational purposes, here's a few ways to prove that inversion lemma for the original inductive definition of hForall
(starting from the simpler to use).
One solution is the dependent destruction
tactic, which also automatically handles heterogeneous equalities, as opposed to destruct
. It is imported from the Program
module:
Import Program.
Lemma hForall_inv
(a : A)
(ls : list A)
(x : B a)
(hl : hlist ls)
: hForall (HCons x hl) -> P a x.
Proof.
intros H.
dependent destruction H.
auto.
Qed.
The (minor) catch is that it uses some axioms about heterogeneous equality:
Print Assumptions hForall_inv.
(*
Section Variables:
P : forall a : A, B a -> Prop
B : A -> Type
A : Type
Axioms:
Eqdep.Eq_rect_eq.eq_rect_eq : forall (U : Type) (p : U)
(Q : U -> Type) (x : Q p)
(h : p = p), x = eq_rect p Q x p h
JMeq_eq : forall (A : Type) (x y : A), x ~= y -> x = y
*)
With a little more knowledge of how destruct
works/dependent pattern-matching, here's a proof without axioms.
There are some detailed explanations of dependent pattern-matching in CPDT, but briefly the issue is that when we do destruct
/inversion
on hForall (HCons x hl)
, the index HCons x hl
gets generalized before the case-split, so you get a nonsensical case where it is replaced with HNil
, and a second case with a different index HCons x0 hl0
, and a good way of remembering the (heterogeneous) equality across that generalization is a research-grade problem. You wouldn't need to mess with heterogeneous equalities if the goal just got rewritten with those variables, and indeed you can refactor the goal so that it explicitly depends on HCons x hl
, instead of x
and hl
separately, which will then be generalized by destruct
:
Lemma hForall_inv'
(a : A)
(ls : list A)
(x : B a)
(hl : hlist ls)
: hForall (HCons x hl) -> P a x.
Proof.
intros H.
change (match HCons x hl return Prop with (* for some reason you have to explicitly annotate the return type as Prop right here *)
| HNil => True
| HCons x _ => P _ x
end).
destruct H.
- exact I. (* Replace [HCons x hl] with [HNil], the goal reduces to [True]. (This is an unreachable case.) *)
- assumption.
(* Or, directly writing down the proof term. *)
Restart.
intros H.
refine (match H in @hForall As hs return
match hs return Prop with
| HNil => True
| HCons x _ => P _ x
end
with
| hForall_nil => I
| hForall_cons _ _ _ _ => _
end).
assumption.
Qed.
The Equations plugin probably automates that properly, but I haven't tried.