I'm modifying existing C# code in order to pilote a piston. Every 30ms, I have a direct feedback of the position of this piston, through an event. The value is stored in a global variable I use to get the current position of the piston.
What I'm trying to achieve: for a given distance input (A->C), I want the piston to travel at full speed for 95% of the distance (A->B), and then slower for the remaining 5% (B->C).
I have access to a command that defines the speed and the destination of the piston : pos(velocity, destination).
However, if I write that code:
pos(fullSpeed,B);
pos(reducedSpeed, C);
the piston directly goes from fullSpeed to reducedSpeed
I tried to use a while loop to compare the current position of the piston with the goal destination, however, upon entering the while loop, the variable storing the piston position does not update anymore.
However, I noticed that by throwing a MessageBox in between, the position value keeps on getting updated, and I can simply click "ok" to launch the second command.
pos(fullSpeed,B);
MessageBox.show("Wait");
pos(reducedSpeed, C);
I would like to know why the "while" loop stops the update of the position variable but the MessageBox does not. I mean, as long as I don't click the "ok" button, the box is here preventing me from doing anything, which for me ressembles a while loop behaviour. Is there another way for me to do this instead of the MessageBox ?
I have little to no knowledge when it comes to C# and no support. I have tried to look in the documentation, but I did not find an answer (I have probably missed it). Any lead is more than welcome.
EDIT: I have no documentation for that code, and it is barely commented. Here is what I gathered (really hope it helps):
To move the piston, taht function is called:
MyEdc.Move.Pos(control, speed, destination, ref MyTan);
control simply define what we pilote (a distance or a load, it is an enum), and I have no idea what MyTan does. Only thing I know is that the MyEdc.Move.Pos returns an error code.
If I look at the definition of "pos", I am redirected to class
public DoPEmove Move;
containing among other things:
public DoPE.ERR Pos(DoPE.CTRL MoveCtrl, double Speed, double Destination, ref short Tan);
DoPE.ERR is also an type enum. However, I cannot reach the definition of a function named "Pos". Coud it be within the .dll included ?
The following is the code that allows me to access the position of the piston (without the global variables):
private int OnData(ref DoPE.OnData Data, object Parameter)
{
if (Data.DoPError == DoPE.ERR.NOERROR)
{
DoPE.Data Sample = Data.Data;
Int32 Time = Environment.TickCount;
if ((Time - LastTime) >= 300 /*ms*/)
{
LastTime = Time;
string text;
text = String.Format("{0}", Sample.Time.ToString("0.000"));
guiTime.Text = text;
text = String.Format("{0}", Sample.Sensor[(int)DoPE.SENSOR.SENSOR_S].ToString("0.000"));
guiPosition.Text = text;
text = String.Format("{0}", Sample.Sensor[(int)DoPE.SENSOR.SENSOR_F].ToString("0.000"));
guiLoad.Text = text;
text = String.Format("{0}", Sample.Sensor[(int)DoPE.SENSOR.SENSOR_E].ToString("0.000"));
guiExtension.Text = text;
}
}
return 0;
}
Which is called using
MyEdc.Eh.OnDataHdlr += new DoPE.OnDataHdlr(OnData);
I realise how little I know on how the soft operates, and how frustrating this is for you. If you think this is a lost cause, no problem, I'll try Timothy Jannace solution, and if it does not help me, I'll stick with the MessageBox solution. I just wanted to know why the MessageBox allowed me to sort of achieve my objectif, but the while loop did not, and how to use it in my advantage here.
I tried to use a while loop to compare the current position of the piston with the goal destination, however, upon entering the while loop, the variable storing the piston position does not update anymore.
While you are in the while
loop, your app can no longer receive and process the feedback event.
One possible solution would be to use async/await like this:
private const int fullSpeed = 1;
private const int reducedSpeed = 2;
private int currentPistonPositon = 0; // global var updated by event as you described
private async void button1_Click(object sender, EventArgs e)
{
int B = 50;
int C = 75;
pos(fullSpeed, B);
await Task.Run(() =>
{ // pick one below?
// assumes that "B" and "currentPistonPosition" can actually be EXACTLY the same value
while (currentPistonPositon != B)
{
System.Threading.Thread.Sleep(25);
}
// if this isn't the case, then perhaps when it reaches a certain threshold distance?
while (Math.Abs(currentPistonPositon - B) > 0.10)
{
System.Threading.Thread.Sleep(25);
}
});
pos(reducedSpeed, C);
}
Note the button1_Click
method signature has been marked with async
. The code will wait for the while loop inside the task to complete while still processing event messages because of the await
. Only then will it move on to the second pos()
call.
Thank you for your answer ! It works like a charm ! (good catch on the EXACT value). I learnt a lot, and I am sure the async/await combo is going to be very usefull in the future ! – MaximeS
If that worked well, then you might want to consider refactoring the code and making your own "goto position" method like this:
private void button1_Click(object sender, EventArgs e)
{
int B = 50;
int C = 75;
GotoPosition(fullSpeed, B);
GotoPosition(reducedSpeed, C);
}
private async void GotoPosition(int speed, int position)
{
pos(speed, position);
await Task.Run(() =>
{
while (Math.Abs(currentPistonPositon - position) > 0.10)
{
System.Threading.Thread.Sleep(25);
}
});
}
Readability would be greatly improved.
You could even get fancier and introduce a timeout concept into the while loop. Now your code could do something like below:
private void button1_Click(object sender, EventArgs e)
{
int B = 50;
int C = 75;
if (GotoPosition(fullSpeed, B, TimeSpan.FromMilliseconds(750)).Result)
{
if (GotoPosition(reducedSpeed, C, TimeSpan.FromMilliseconds(1500)).Result)
{
// ... we successfully went to B at fullSpeed, then to C at reducedSpeed ...
}
else
{
MessageBox.Show("Piston Timed Out");
}
}
else
{
MessageBox.Show("Piston Timed Out");
}
}
private async Task<bool> GotoPosition(int speed, int position, TimeSpan timeOut)
{
pos(speed, position); // call the async API
// wait for the position to be reached, or the timeout to occur
bool success = true; // assume we have succeeded until proven otherwise
DateTime dt = DateTime.Now.Add(timeOut); // set our timeout DateTime in the future
await Task.Run(() =>
{
System.Threading.Thread.Sleep(50); // give the piston a chance to update maybe once before checking?
while (Math.Abs(currentPistonPositon - position) > 0.10) // see if the piston has reached our target position
{
if (DateTime.Now > dt) // did we move past our timeout DateTime?
{
success = false;
break;
}
System.Threading.Thread.Sleep(25); // very small sleep to reduce CPU usage
}
});
return success;
}