I'm trying to teach myself the ways for 3D programming with OpenGL, however I am struggling with some things, especially projection matrices.
I defined some vertices for a cube and successfully handed them to my graphics processor. The cube goes from xyz -0.5 to xyz 0.5 respectively, which gets rendered fine.
To move it into my world coordinate system, I am using this model matrix:
auto model = glm::mat4(
glm::vec4(1, 0, 0, 0),
glm::vec4(0, 1, 0, 0),
glm::vec4(0, 0, 1, 0),
glm::vec4(0, 0, 0, 1)
);
model = glm::translate(model, glm::vec3(0.f, 0.f, 495.f));
model = glm::scale(model, glm::vec3(100.f, 100.f, 100.f));
This successfully moves my cube to (-50, -50, 445) -> (50, 50, 545)
so its now centered in the 200x200x1000 world coordinates I defined for myself.
My camera / view matrix is
auto view = glm::lookAt(
glm::vec3(0.f, 0.f, 5.f),
glm::vec3(0.f, 0.f, 0.f),
glm::vec3(0.f, 1.f, 0.f)
);
which moves the cube slightly closer, changing the z coordinate to 440 and 540 respectively. I don't understand why this is happening but I guess it has something to do with glm expecting a right hand coordinate system while I am working with a left handed one? While this is not why I am posting this question, I would be happy if someone would clear it up for me.
Now to my actual problem: I am trying to make use of glm::perspective
. I call it like this:
auto perspective = glm::perspective(glm::radians(55.f), 1.f, 0.f, 1000.f);
If I'm not mistaken, at a z value of 440 I can expect the clipping area to go from roughly -229
to 229
, so I would expect that bottom right cube vertex at (-50,-50)
is visible. I calculated this by drawing the frustum in 2D, when I noticed that I should be able to calculate the height of any distance to the camera using tan(alpha / 2) * distToCamera = maxVisibleCoordinate
(working with a 1:1 aspect ratio). Is this a correct assumption? Here is my terrible drawing, maybe you can tell that I have a wrong understanding of something with it:
In the final step I am trying to get all this together in my vertex shader using
gl_Position = projection * view * model * vec4(pos.x, pos.y, pos.z, 1.0);
which yields a perfectly reasonable result for the x and y value but the z value is always -1
which is, as far as I know, just right for not being displayed.
For my front-bottom-left vertex of the cube (-0.5, -0.5, -0.5)
the result is (-96.04, -96.04, -440, -440)
, normalized to (-0.218, -0.218, -1)
.
For my back-top-right vertex of the cube (0.5, 0.5, 0.5)
the result is (96.04, 96.04, -550, -550)
, normalized to (0.218, 0.218, -1)
.
What am I getting wrong, that my z value is lost and just set to -1 instead? When playing around with the camera position, the best I can get is getting it to 1, which also results in an empty window and is definitely not what I would expect.
A projection matrix is like this:
In the picture, f is for zfar and n is for znear.
As you can see, if you put znear = 0
, the term at the 4th column become zero, which is incorrect. Also, -(f+n)/(f-n) = -1
, which is incorrect too.
So, the conclusion is, znear
cannot be zero. It is usually a small value, for example, 0.1