Search code examples
emulationintel-8080

What does addr means in the opcode 0x3a LDA addr intel 8080


LDA is a simple opcode that loads to accumulator (register a) the pointed data in intel 8080 processor. In this condition (0x3a LDA addr) it says that op loads the addr to accumulator. But i couldn't recognize what it specifyies as addr.

A <- (adr) is the operation which 0x3a does and it uses 3 bytes of memory. I could store the data in the last 2 bytes of op as hi add and low add in a stack but accumulator is only 1 byte so i can't. Thanks.


Solution

  • LDA a16 instruction reads a byte from address a16 (the 8080 has a 16-bit bus) and stores that value into the A register.

    This instruction is encoded as three : 0x3a lo hi, being lo and hi the two bytes that compose the address.

    If you want to store an immediate (constant) value into A you should use instead instruction MVI A, x, being x the constant value. This instruction is encoded as: 0x3e x, only two bytes, as you seem to expect.


    It looks like you are confusing memory address and memory content. The 8080 has an address bus of 16 bits and a data bus of 8 bits. That means that it can access memory from address 0x0000 up to 0xffff (16 full bits), or 65536 different addresses, but each of these address can store a single byte, with a value from 0x00 to 0xff (8 bits). That adds up to 64 kilobytes of memory.

    Now, when you want to read a value from memory you need to specify the address of the value you are reading (remember, the address is 16 bits, the value is 8 bits). So you have to encode somehow the address into the instruction using 2 bytes. Intel CPU use the little-endian scheme, so to encode an address the lower 8 bits are stored in the first byte and the higher 8 bits in the second one. And that is what the LDA opcode does, and that is why it is 3 bytes long.