We are creating a dataflow pipeline, we will read the data from postgres and write it to a parquet file. ParquetIO.Sink allows you to write a PCollection of GenericRecord into a Parquet file (from here https://beam.apache.org/releases/javadoc/2.5.0/org/apache/beam/sdk/io/parquet/ParquetIO.html). But the parquet file schema is not like what i expected
here is my schema:
schema = new org.apache.avro.Schema.Parser().parse("{\n" +
" \"type\": \"record\",\n" +
" \"namespace\": \"com.example\",\n" +
" \"name\": \"Patterns\",\n" +
" \"fields\": [\n" +
" { \"name\": \"id\", \"type\": \"string\" },\n" +
" { \"name\": \"name\", \"type\": \"string\" },\n" +
" { \"name\": \"createdAt\", \"type\": {\"type\":\"string\",\"logicalType\":\"timestamps-millis\"} },\n" +
" { \"name\": \"updatedAt\", \"type\": {\"type\":\"string\",\"logicalType\":\"timestamps-millis\"} },\n" +
" { \"name\": \"steps\", \"type\": [\"null\",{\"type\":\"array\",\"items\":{\"type\":\"string\",\"name\":\"json\"}}] },\n" +
" ]\n" +
"}");
this is my code so far:
Pipeline p = Pipeline.create(
PipelineOptionsFactory.fromArgs(args).withValidation().create());
p.apply(JdbcIO.<GenericRecord> read()
.withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
"org.postgresql.Driver", "jdbc:postgresql://localhost:port/database")
.withUsername("username")
.withPassword("password"))
.withQuery("select * from table limit(10)")
.withCoder(AvroCoder.of(schema))
.withRowMapper((JdbcIO.RowMapper<GenericRecord>) resultSet -> {
GenericRecord record = new GenericData.Record(schema);
ResultSetMetaData metadata = resultSet.getMetaData();
int columnsNumber = metadata.getColumnCount();
for(int i=0; i<columnsNumber; i++) {
Object columnValue = resultSet.getObject(i+1);
if(columnValue instanceof UUID) columnValue=columnValue.toString();
if(columnValue instanceof Timestamp) columnValue=columnValue.toString();
if(columnValue instanceof PgArray) {
Object[] array = (Object[]) ((PgArray) columnValue).getArray();
List list=new ArrayList();
for (Object d : array) {
if(d instanceof PGobject) {
list.add(((PGobject) d).getValue());
}
}
columnValue = list;
}
record.put(i, columnValue);
}
return record;
}))
.apply(FileIO.<GenericRecord>write()
.via(ParquetIO.sink(schema).withCompressionCodec(CompressionCodecName.SNAPPY))
.to("something.parquet")
);
p.run();
this is what i get:
message com.example.table {
required binary id (UTF8);
required binary name (UTF8);
required binary createdAt (UTF8);
required binary updatedAt (UTF8);
optional group someArray (LIST) {
repeated binary array (UTF8);
}
}
this is what i expected:
message com.example.table {
required binary id (UTF8);
required binary name (UTF8);
required binary createdAt (UTF8);
required binary updatedAt (UTF8);
optional repeated binary someArray(UTF8);
}
please help
I did not find a way to create a repeated element from Avro that isn't in a GroupType.
The ParquetIO in Beam uses a "standard" avro conversion defined in the parquet-mr
project, which is implemented here.
It appears that there are two ways to turn an Avro ARRAY field to a Parquet message -- but neither of them create what you are looking for.
Currently, the avro conversion is the only way to interact with ParquetIO at the moment. I saw this JIRA Use Beam schema in ParquetIO that extend this to Beam Rows, which might permit a different parquet message strategy.
Alternatively, you could create a JIRA feature request for ParquetIO to support thrift structures, which should allow finer control over the parquet structure.