In an Autoencoder it is easy to create an Encoder Model as we have a clear Input layer. But I am puzzled as to how to create a Decoder model. For example, here are the layers:
m = Sequential()
## Encoder
m.add(Dense(512, activation='elu', input_shape=(784,)))
m.add(Dense(128, activation='elu'))
m.add(Dense(2,
activation='linear',
name="bottleneck")
)
## Decoder
m.add(Dense(128, activation='elu', name = "first_decode_layer"))
m.add(Dense(512, activation='elu'))
m.add(Dense(784, activation='sigmoid', name = "output_layer"))
# Compile the model
m.compile(
loss='mean_squared_error',
optimizer = Adam()
)
Now an encoder model is easily created, as:
encoder = Model(m.input,
m.get_layer('bottleneck').output
)
But, I am at a loss to understand as to how to create a decoder model. For example, this does not work:
decoder = Model(m.get_layer("first_decode_layer").input,
m.get_layer('output_layer').output
)
The error requires that I should have an Input layer. It says:
"inputs must come from `keras.layers.Input` (thus holding past layer
metadata), they cannot be the output of a previous non-Input layer.
Here, a tensor specified as input to your model was not an Input tensor, "
I will be grateful for guidance.
#encoder
encoder = Sequential()
....
encoder.add(...."bottleneck")
#decoder
decoder = Sequential()
decoder.add(......"first_decoder_layer")
...
decoder.add(......"output_layer")
#autoencoder
auto_out = decoder(encoder.output)
autoencoder = Model(encoder.input, auto_out)