I am attempting to read dates from a CSV. Sample:
Date User 1 User 2
8/1/2019 IN IN
8/2/2019 IN Out
8/3/2019 IN IN
8/4/2019 IN IN
8/5/2019 IN IN
8/6/2019 IN IN
8/7/2019 IN IN
8/8/2019 IN IN
8/9/2019 IN IN
8/10/2019 IN IN
8/11/2019 IN IN
I thought I had a good method worked out for reading these dates correctly, which was:
Vacation <- read.csv("Vacation.csv", stringsAsFactors = FALSE)
Vacation$Date <- anydate(Vacation$Date)
However, for some reason only dates before the 10th are NA once I convert to date.
[1] NA NA NA NA NA NA
[7] NA NA NA "2019-08-10" "2019-08-11" "2019-08-12"
[13] "2019-08-13" "2019-08-14" "2019-08-15" "2019-08-16" "2019-08-17" "2019-08-18"
[19] "2019-08-19" "2019-08-20" "2019-08-21" "2019-08-22" "2019-08-23" "2019-08-24"
[25] "2019-08-25" "2019-08-26" "2019-08-27" "2019-08-28" "2019-08-29" "2019-08-30"
[31] "2019-08-31" NA NA NA NA NA
[37] NA NA NA NA "2019-09-10" "2019-09-11"
[43] "2019-09-12" "2019-09-13" "2019-09-14" "2019-09-15" "2019-09-16" "2019-09-17"
[49] "2019-09-18" "2019-09-19" "2019-09-20" "2019-09-21" "2019-09-22" "2019-09-23"
[55] "2019-09-24" "2019-09-25" "2019-09-26" "2019-09-27" "2019-09-28" "2019-09-29"
Base R
as.Date(strptime(d$Date, "%m/%d/%Y"))
OR
lubridate::mdy(d$Date)
#[1] "2019-08-01" "2019-08-02" "2019-08-03" "2019-08-04" "2019-08-05" "2019-08-06" "2019-08-07"
#[8] "2019-08-08" "2019-08-09" "2019-08-10" "2019-08-11"