I know there it is possible to do multiply-and-add using a single instruction in AVX2. I want to use multiply-and-add instruction where each 256-bit AVX2 variable is packed with 16, 16-bit variables. For instance, consider the example below,
res=a0*b0+a1*b1+a2*b2+a3*b3
here each of res, a0, a1, a2, a3, b0, b1, b2, b3 are 16-bit variables. I have closely followed the discussion. Please find my code below to calculate the example shown above,
#include<stdio.h>
#include<stdint.h>
#include <immintrin.h>
#include<time.h>
#include "cpucycles.c"
#pragma STDC FP_CONTRACT ON
#define AVX_LEN 16
inline __m256i mul_add(__m256i a, __m256i b, __m256i c) {
return _mm256_add_epi16(_mm256_mullo_epi16(a, b), c);
}
void fill_random(int16_t *a, int32_t len){ //to fill up the random array
int32_t i;
for(i=0;i<len;i++){
a[i]=(int16_t)rand()&0xffff;
}
}
void main(){
int16_t a0[16*AVX_LEN], b0[16*AVX_LEN];
int16_t a1[16*AVX_LEN], b1[16*AVX_LEN];
int16_t a2[16*AVX_LEN], b2[16*AVX_LEN];
int16_t a3[16*AVX_LEN], b3[16*AVX_LEN];
int16_t res[16*AVX_LEN];
__m256i a0_avx[AVX_LEN], b0_avx[AVX_LEN];
__m256i a1_avx[AVX_LEN], b1_avx[AVX_LEN];
__m256i a2_avx[AVX_LEN], b2_avx[AVX_LEN];
__m256i a3_avx[AVX_LEN], b3_avx[AVX_LEN];
__m256i res_avx[AVX_LEN];
int16_t res_avx_check[16*AVX_LEN];
int32_t i,j;
uint64_t mask_ar[4]; //for unloading AVX variables
mask_ar[0]=~(0UL);mask_ar[1]=~(0UL);mask_ar[2]=~(0UL);mask_ar[3]=~(0UL);
__m256i mask;
mask = _mm256_loadu_si256 ((__m256i const *)mask_ar);
time_t t;
srand((unsigned) time(&t));
int32_t repeat=100000;
uint64_t clock1, clock2, fma_clock;
clock1=clock2=fma_clock=0;
for(j=0;j<repeat;j++){
printf("j : %d\n",j);
fill_random(a0,16*AVX_LEN);// Genrate random data
fill_random(a1,16*AVX_LEN);
fill_random(a2,16*AVX_LEN);
fill_random(a3,16*AVX_LEN);
fill_random(b0,16*AVX_LEN);
fill_random(b1,16*AVX_LEN);
fill_random(b2,16*AVX_LEN);
fill_random(b3,16*AVX_LEN);
for(i=0;i<AVX_LEN;i++){ //Load values in AVX variables
a0_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&a0[i*16]));
a1_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&a1[i*16]));
a2_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&a2[i*16]));
a3_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&a3[i*16]));
b0_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&b0[i*16]));
b1_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&b1[i*16]));
b2_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&b2[i*16]));
b3_avx[i] = _mm256_loadu_si256 ((__m256i const *) (&b3[i*16]));
}
for(i=0;i<AVX_LEN;i++){
res_avx[i]= _mm256_set_epi64x(0, 0, 0, 0);
}
//to calculate a0*b0 + a1*b1 + a2*b2 + a3*b3
//----standard calculation----
for(i=0;i<16*AVX_LEN;i++){
res[i]=a0[i]*b0[i] + a1[i]*b1[i] + a2[i]*b2[i] + a3[i]*b3[i];
}
//-----AVX-----
clock1=cpucycles();
for(i=0;i<AVX_LEN;i++){ //simple approach
a0_avx[i]=_mm256_mullo_epi16(a0_avx[i], b0_avx[i]);
res_avx[i]=_mm256_add_epi16(a0_avx[i], res_avx[i]);
a1_avx[i]=_mm256_mullo_epi16(a1_avx[i], b1_avx[i]);
res_avx[i]=_mm256_add_epi16(a1_avx[i], res_avx[i]);
a2_avx[i]=_mm256_mullo_epi16(a2_avx[i], b2_avx[i]);
res_avx[i]=_mm256_add_epi16(a2_avx[i], res_avx[i]);
a3_avx[i]=_mm256_mullo_epi16(a3_avx[i], b3_avx[i]);
res_avx[i]=_mm256_add_epi16(a3_avx[i], res_avx[i]);
}
/*
for(i=0;i<AVX_LEN;i++){ //FMA approach
res_avx[i]=mul_add(a0_avx[i], b0_avx[i], res_avx[i]);
res_avx[i]=mul_add(a1_avx[i], b1_avx[i], res_avx[i]);
res_avx[i]=mul_add(a2_avx[i], b2_avx[i], res_avx[i]);
res_avx[i]=mul_add(a3_avx[i], b3_avx[i], res_avx[i]);
}
*/
clock2=cpucycles();
fma_clock = fma_clock + (clock2-clock1);
//-----Check----
for(i=0;i<AVX_LEN;i++){ //store avx results for comparison
_mm256_maskstore_epi64 (res_avx_check + i*16, mask, res_avx[i]);
}
for(i=0;i<16*AVX_LEN;i++){
if(res[i]!=res_avx_check[i]){
printf("\n--ERROR--\n");
return;
}
}
}
printf("Total time taken is :%llu\n", fma_clock/repeat);
}
The cpucycles code is from ECRYPT and given below,
#include "cpucycles.h"
long long cpucycles(void)
{
unsigned long long result;
asm volatile(".byte 15;.byte 49;shlq $32,%%rdx;orq %%rdx,%%rax"
: "=a" (result) :: "%rdx");
return result;
}
My gcc -version returns,
gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-36)
I am using
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
When I run this on my computer, I get the following cycles for fma approach and simple approach respectively
FMA approach : Total time taken is :109
Simple approach : Total time taken is :141
As you can see, the FMA approach is slightly faster but I expected to be even more faster. I understand that in my sample code there are many memory accesses which might be the reason of deteriorating performance. But,
When I dump the assembly I see the almost similar instructions for both approaches. I do not see any fma instructions in the FMA version. I don't understand the reason. Is it beacause _mm256_mullo_epi16 instructions?
Is my approach correct?
Can you please help me to fix this?
I am new to AVX2 programming so it is highly possible that I ahve done something which is not very standard but I will be glad to answer something which is not clear. I thank you all for your help in advance.
x86 doesn't have SIMD-integer FMA / MAC (multiply-accumulate) other than horizontal pmaddubsw / pmaddwd which add horizontal into wider integers. (Until AVX512IFMA _mm_madd52lo_epu64
or AVX512_4VNNIW _mm512_4dpwssd_epi32(__m512i, __m512ix4, __m128i *)
).
FP-contract and -ffast-math
options have nothing to do with SIMD-integer stuff; integer math is always exact.
I think your "simple" approach is slower because you're also modifying the input arrays and this doesn't get optimized away, e.g.
a0_avx[i] = _mm256_mullo_epi16(a0_avx[i], b0_avx[i]);
as well as updating res_avx[i]
.
If the compiler doesn't optimize that away, those extra stores might be exactly why it's slower than your mul_add
function. rdtsc
without a serializing instruction doesn't even have to wait for earlier instructions to execute, let alone retire or commit stores to L1d cache, but extra uops for the front-end are still more to chew through. At only 1 store per clock throughput, that could easily be a new bottleneck.
FYI, you don't need to copy your inputs to arrays of __m256i
. Normally you'd just use SIMD loads on regular data. That's no slower than indexing arrays of __m256i
. Your arrays are too big for the compiler to fully unroll and keep everything in registers (like it would for scalar __m256i
variables).
If you'd just used __m256i a0 = _mm256_loadu_si256(...)
inside the loop then you could have updated a0
without slowing your code down because it would just be a single local variable that can be kept in a YMM reg.
But I find it's good style to use new named tmp vars for most steps to make code more self-documenting. Like __m256i ab = ...
or sum = ...
. You could reuse the same sum
temporary for each a0+b0
and a1+b1
.
You might also use a temporary for the result vector instead of making the compiler optimize away the updates of memory at res_avx[i]
until the final one.
You can use alignas(32) int16_t a0[...];
to make plain arrays aligned for _mm256_load
instead of loadu
.
Your cpucycles()
RDTSC function doesn't need to use inline asm. Use __rdtsc()
instead.