I've kind of grasped some knowledge on functional programming but can't really wrap my head around this function programming block of code. I didn't really knew where I should ask something like this I couldn't figure out so asked it here. So I would really appreciate if someone will help me understand what this higher order function, or a monads example doing?
P.S this code is from composing software book by Eric Elliot
const f = n => n+1;
const g = n => n*2;
This composeM
functions is made to compose and map or over numbers of functions? I know reduce but really have no idea how this function should be working.
const composeM = (...mps) => mps.reduce((f, g) => x => g(x).map(f));
const h = composeM(f,g);
h(20)
Then, the function composeM
was more generalized by doing:
const compose = methods => (...mps) => mps.reduce((f, g) => x => g(x)[method](f));
Then, I could create composedPromises
or composedMaps
like
const composePromises = compose("then")(f,g);
How is the g(x)[method](f)
even working? it should be g(x).then(f)
.
Update above map composeM function not working
const f = n => Promise.resolve( n+1 );
const g = n => Promise.resolve( n*2 );
const composePromises = (...mps) => mps.reduce((f, g) => x => g(x).then(f))
const h = composePromises(f, g)
h(20)
Consider function composition, which has the following type signature.
// compose :: (b -> c) -- The 1st argument is a function from b to c.
// -> (a -> b) -- The 2nd argument is a function from a to b.
// -> (a -> c) -- The final result is a function from a to c.
// +-----------------b -> c
// | +---------a -> b
// | | +-- a
// | | |
const compose = (f, g) => x => f(g(x));
// |_____|
// |
// c
The composeP
function is similar to the compose
function, except it composes functions that return promises.
// composeP :: (b -> Promise c) -- The 1st argument is a function from b to promise of c.
// -> (a -> Promise b) -- The 2nd argument is a function from a to promise of b.
// -> (a -> Promise c) -- The final result is a function from a to promise of c.
// +-------------------------b -> Promise c
// | +-------- a -> Promise b
// | | +-- a
// | | |
const composeP = (f, g) => x => g(x).then(f);
// |__________|
// |
// Promise c
Remember that the then
method applies the callback function to the value of the promise. If we replace .then
with [method]
where method
is the name of the bind function of a specific monad, then we can compose functions that produces values of that monad.
For example, .flatMap
is the bind function of arrays. Hence, we can compose functions that return arrays as follows.
// composeA :: (b -> Array c) -- The 1st argument is a function from b to array of c.
// -> (a -> Array b) -- The 2nd argument is a function from a to array of b.
// -> (a -> Array c) -- The final result is a function from a to array of c.
const composeA = (f, g) => x => g(x).flatMap(f);
// f :: Bool -> Array String
const f = x => x ? ["yes"] : ["no"];
// g :: Int -> Array String
const g = n => [n <= 0, n >= 0];
// h :: Int -> Array String
const h = composeA(f, g);
console.log(h(-1)); // ["yes", "no"]
console.log(h(0)); // ["yes", "yes"]
console.log(h(1)); // ["no", "yes"]
That was a very contrived example but it got the point across.
Anyway, the generic compose
function composes monads.
const compose = method => (f, g) => x => g(x)[method](f);
const composeP = compose("then");
const composeA = compose("flatMap");
Finally, the various monad compose
functions only compose two functions at a time. We can use reduce
to compose several of them at once. Hope that helps.