I need to run such a task below. Somehow, I am missing a point. I know, I cannot use javasparkcontext like this and pass javafunctions since there is serialization problem.
I need to run multiple cassandra queries at size cartesian.size(). Is there any advice?
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<DateTime> dateTimeJavaRDD = jsc.parallelize(dateTimes); //List<DateTime>
JavaRDD<Integer> virtualPartitionJavaRDD = jsc.parallelize(virtualPartitions); //List<Integer>
JavaPairRDD<DateTime, Integer> cartesian = dateTimeJavaRDD.cartesian(virtualPartitionJavaRDD);
long c = cartesian.map(new Function<Tuple2<DateTime, Integer>, Long>() {
@Override
public Long call(Tuple2<DateTime, Integer> tuple2) throws Exception {
return javaFunctions(jsc).cassandraTable("keyspace", "table").where("p1 = ? and p2 = ?", tuple2._1(), tuple2._2()).count();
}
}).reduce((a,b) -> a + b);
System.out.println("TOTAL ROW COUNT IS: " + c);
The correct solution should be to perform join between your data, and Casasndra table. There is joinWithCassandraTable function that is doing what you need - you just generate RDD of Tuple2
that contains values for p1
& p2
, and then call joinWithCassandra table, something like this (not tested, adopted from my example here):
JavaRDD<Tuple2<Integer, Integer>> trdd = cartesian.map(new Function<Tuple2<DateTime, Integer>, Tuple2<Integer, Integer>>() {
@Override
public Tuple2<Integer, Integer> call(Tuple2<DateTime, Integer> tuple2) throws Exception {
return new Tuple2<Integer, Integer>(tuple2._1(), tuple2._2());
}
});
CassandraJavaPairRDD<Tuple2<Integer, Integer>, Tuple2<Integer, String>> joinedRDD =
trdd.joinWithCassandraTable("test", "jtest",
someColumns("p1", "p2"), someColumns("p1", "p2"),
mapRowToTuple(Integer.class, String.class), mapTupleToRow(Integer.class));
// perform counting here...