I need help implementing my working 4th-Order Runge-Kutta method for solving Newton's Cooling Law. Since time (t) is introduced with this problem, I am confused on the placings for the given conditions. Here is what's given: time interval begins t = 0 to t = 20 (in seconds), object temp = 300, ambient temp = 70, time increment is .1, and constant of proportionality = 0.19
public class RungeKutta {
public static double NewtonsCoolingLaw(double objectTemp,double ambientTemp)
{
double k = 0.19;
return -k * (objectTemp - ambientTemp);
}
public static void main(String[] args) {
double result = 0.0;
double initialObjectTemp = 300.0, givenAmbientTemp = 70.0;
double deltaX = (20.0 - 0)/10000;
for(double t = 0.0; t <= 20.0; t += .1)
{
double k1 = deltaX * NewtonsLaw(initialObjectTemp,givenAmbientTemp);
double k2 = deltaX * NewtonsLaw(initialObjectTemp + (deltaX/2.0),givenAmbientTemp + (k1/2.0));
double k3 = deltaX * NewtonsLaw(initialObjectTemp + (deltaX/2.0), givenAmbientTemp + (k2/2.0));
double k4 = deltaX * NewtonsLaw(initialObjectTemp + deltaX, givenAmbientTemp + k3);
givenAmbientTemp = givenAmbientTemp + (1.0/6.0) * (k1 + (2.0 * k2) + (2.0 * k3) + k4);
result = givenAmbientTemp;
}
System.out.println("The approx. object temp after 20 seconds is: " + result);
}
}
Bellow is my RK4 method for solving ODEs. In the code below, I solve the ODE y' = y - x to approximate y(1.005) given that y(1) = 10 and delta x = 0.001
public class RungeKutta {
public static double functionXnYn(double x,double y)
{
return y-x;
}
public static void main(String[] args) {
double deltaX = (1.005 - 0)/10000;
double y = 10.0;
double result = 0.0;
for(double x = 1.0; x <= 1.005; x = x + deltaX)
{
double k1 = deltaX * functionXnYn(x,y);
double k2 = deltaX * functionXnYn(x + (deltaX/2.0),y + (k1/2.0));
double k3 = deltaX * functionXnYn(x + (deltaX/2.0), y + (k2/2.0));
double k4 = deltaX * functionXnYn(x + deltaX, y + k3);
y = y + (1.0/6.0) * (k1 + (2.0 * k2) + (2.0 * k3) + k4);
result = y;
}
System.out.println("The value of y(1.005) is: " + result);
}
}
Based on the formula T(t) = Ts + (T0 - Ts) * e^(-k*t) I should have an approximation of 75.1 for solving Newton's DE. Ts = ambient temp, T0 = object initial temp, t = 20 (seconds elapsed), and k = .19 constant of proportionality
I'm guessing (but not really hard) that the ODE you are trying to solve is
dT(t)/dt = -k*(T(t)-T_amb)
As you can see, the right side does not directly depend on the time.
As you make no attempts to code for a system, it is likely that the ambient temperature T_amb
is a constant. Thus moving the constants around and using consistent function names and returning the ODE function arguments to the format time, state variable
public class RungeKutta {
public static double CoolingLaw(double time, double objectTemp)
{
double k = 0.19, ambientTemp = 70.0;
return -k * (objectTemp - ambientTemp);
}
public static void main(String[] args) {
double result = 0.0;
double objectTemp = 300.0;
double dt = 0.1
for(double t = 0.0; t <= 20.0; t += dt)
{
double k1 = dt * CoolingLaw(t, objectTemp);
double k2 = dt * CoolingLaw(t + (dt/2.0), objectTemp + (k1/2.0));
double k3 = dt * CoolingLaw(t + (dt/2.0), objectTemp + (k2/2.0));
double k4 = dt * CoolingLaw(t + dt, objectTemp + k3);
objectTemp = objectTemp + (1.0/6.0) * (k1 + (2.0 * k2) + (2.0 * k3) + k4);
result = objectTemp;
}
System.out.println("The approx. object temp after 20 seconds is: " + result);
}
}