I have been working on implementing a grayscale gradient with different dithering methods, but the task calls for the gradient to be horizontal starting with black on the left. In my attempts to rotate the image horizontally I have tried:
std::reverse(result.begin(), result.end())
I have also tried handling the vector like a 2D array:
temp = result[i][j];
result[i][j] = result[i][width - 1 - j];
result[i][width - 1 - j] = temp;
None of these methods have worked so far. Here's the code I'm working with:
//***headers n stuff***
vector<vector<int>> gradient(int height, int width)
{
assert(height > 0 && width > 0);
int cf = height / 255;
int color = 0;
vector<vector<int>> result(width, vector<int>(height));
for (int i = 0; i < height; i += cf)
{
for (int j = 0; j < cf; j++)
{
fill(result[i + j].begin(), result[i + j].end(), color % 255);
}
color--;
}
stable_sort(result.begin(), result.end());
return result;
}
vector<vector<int>> Ordered(int height, int width, vector<vector<int>> result)
{
int ditherSize = 3;
int diterLookup[] = { 8, 3, 4, 6, 1, 2, 7, 5, 9 };
vector<vector<int>> temp(height, vector<int>(width));
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
int xlocal = i%ditherSize;
int ylocal = j%ditherSize;
int requiredShade = diterLookup[xlocal + ylocal * 3]*255/9;
if (requiredShade >= result[i][j])
{
result[i][j] = 0;
}
else {
result[i][j] = 255;
}
}
}
return temp;
}
vector<vector<int>> Random(int height, int width, vector<vector<int>> result)
{
int ditherSize = 3;
int diterLookup[] = { 8, 3, 4, 6, 1, 2, 7, 5, 9 };
//vector<vector<int>> result(height, vector<int>(width));
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
int requiredShade = rand() % 255;
if (requiredShade >= result[i][j]) {
result[i][j] = 0;
}
else {
result[i][j] = 255;
}
}
}
return result;
}
vector<vector<int>> Floyd_Steinberg(int height, int width, vector<vector<int>> result)
{
int ditherSize = 3;
int diterLookup[] = { 8, 3, 4, 6, 1, 2, 7, 5, 9 };
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
int oldpixel = result[i][j];
int newpixel;
if (oldpixel<=127) {
newpixel = 0;
}
else {
newpixel = 255;
}
result[i][j] = newpixel;
int quanterror = oldpixel - newpixel;
if (j < width - 1) {
result[i][j+1] += quanterror * 7 / 16;
}
if (i < height - 1) {
if (j > 0){
result[i + 1][j - 1] += quanterror * 3 / 16;
}
result[i+1][j] += quanterror * 5 / 16;
if (j < width - 1) {
result[i + 1][j + 1] += quanterror * 1 / 16;
}
}
}
}
return result;
}
vector<vector<int>> JJN(int height, int width, vector<vector<int>> result)
{
int ditherSize = 3;
int diterLookup[] = { 8, 3, 4, 6, 1, 2, 7, 5, 9 };
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
int oldpixel = result[i][j];
int newpixel;
if (oldpixel <= 127) {
newpixel = 0;
}
else {
newpixel = 255;
}
result[i][j] = newpixel;
int quanterror = oldpixel - newpixel;
if (j < width - 1) {
result[i][j + 1] += quanterror * 7 / 48;
if(j<width-2)
result[i][j + 2] += quanterror * 5 / 48;
}
if (i < height - 1) {
if (j > 0) {
if (j > 1)
result[i + 1][j - 2] += quanterror * 3 / 48;
result[i + 1][j - 1] += quanterror * 5 / 48;
}
result[i + 1][j] += quanterror * 7 / 48;
if (j < width - 1) {
result[i + 1][j + 1] += quanterror * 5 / 48;
if (j < width - 2)
result[i + 1][j + 2] += quanterror * 3 / 48;
}
}
if (i < height - 2) {
if (j > 0) {
if(j>1)
result[i + 2][j - 2] += quanterror * 1 / 48;
result[i + 2][j - 1] += quanterror * 3 / 48;
}
result[i + 2][j] += quanterror * 5 / 48;
if (j < width - 1) {
result[i + 2][j + 1] += quanterror * 3 / 48;
if (j < width - 2)
result[i + 2][j + 2] += quanterror * 1 / 48;
}
}
}
}
return result;
}
int main(int argc, char *argv[])
{
if (argc < 5) {
cout << "usage:" << endl << "prog.exe <filename> <width> <height> <dithering>"<<endl;
return 0;
}
stringstream w(argv[2]);
stringstream h(argv[3]);
stringstream d(argv[4]);
int numcols, numrows, dithering;
//***handling error cases ***
srand(time(0));
ofstream file;
file.open(argv[1]);
if (!file)
{
cout << "can't open file" << endl;
return 0;
}
file << "P5" << "\n";
file << numrows << " " << numcols << "\n";
file << 255 << "\n";
vector<vector<int>> pixmap{ gradient(numrows, numcols) };
switch (dithering) {
case 1:
pixmap = Ordered(numrows, numcols, pixmap);
break;
case 2:
pixmap = Random(numrows, numcols, pixmap);
break;
case 3:
pixmap = Floyd_Steinberg(numrows, numcols, pixmap);
break;
case 4:
pixmap = JJN(numrows, numcols, pixmap);
break;
default:
break;
}
for_each(pixmap.begin(), pixmap.end(), [&](const auto& v) {
copy(v.begin(), v.end(), ostream_iterator<char>{file, ""});
});
file.close();
}
And here is the result Using Ordered Dither
If your gray scale image is stored as a std::vector<std::vector<int>>
, I have made the following code for you.
It rotates the image by 90 degrees in the trigonometric direction:
#include <iostream>
#include <vector>
typedef std::vector<std::vector<int>> GrayScaleImage;
// To check is the GrayScaleImage is valid (rectangular and not empty matrix)
bool isValid(const GrayScaleImage & gsi)
{
bool valid(true);
if(!gsi.empty())
{
size_t width(gsi[0].size());
for(unsigned int i = 1; valid && (i < gsi.size()); ++i)
{
if(gsi[i].size() != width)
valid = false;
}
}
else
valid = false;
return valid;
}
// To print the GrayScaleImage in the console (for the test)
void display(const GrayScaleImage & gsi)
{
for(const std::vector<int> & line : gsi)
{
for(size_t i = 0; i < line.size(); ++i)
std::cout << line[i] << ((i < line.size()-1) ? " " : "");
std::cout << '\n';
}
std::cout << std::flush;
}
// To rotate the GrayScaleImage by 90 degrees in the trigonometric direction
bool rotate90(const GrayScaleImage & gsi, GrayScaleImage & result)
{
bool success(false);
if(isValid(gsi))
{
result = GrayScaleImage(gsi[0].size());
for(const std::vector<int> & line : gsi)
{
for(unsigned int i = 0; i < line.size(); ++i)
result[gsi[0].size()-1 - i].push_back(line[i]);
}
success = true;
}
return success;
}
// Test
int main()
{
GrayScaleImage original { {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11} };
GrayScaleImage rotated;
rotate90(original, rotated);
std::cout << "Original:" << std::endl;
display(original);
std::cout << "\nRotated:" << std::endl;
display(rotated);
return 0;
}
The function that will interest you is rotate90()
.
The output of the test written in the main()
function is:
Original:
0 1 2
3 4 5
6 7 8
9 10 11Rotated:
2 5 8 11
1 4 7 10
0 3 6 9
As you can see, it worked successfully.
I hope it can help.
EDIT:
I tried with a real grayscale image generated and the rotate90()
function worked well.
Here is the view, before and after rotating the image (2 examples, landscape and portrait):
Example with landscape image
Example with portrait image
So now we know that the function works well.
I see that your result is not as expected (black area added, dimensions mismatching), that kind of behaviour can occur when you make mistakes with the dimensions of the matrixes.
EDIT2:
The invalid output are not due to rotate90()
but to the PGM file generation. I think it is because the data are written as binaries but not the header.
The following function I have written creates valid PGM files:
typedef std::vector<std::vector<uint8_t>> GrayScaleImage;
bool createPGMImage(const std::string & file_path, const GrayScaleImage & img)
{
bool success(false);
if(isValid(img))
{
std::ofstream out_s(file_path, std::ofstream::binary);
if(out_s)
{
out_s << "P5\n" << img[0].size() << ' ' << img.size() << '\n' << 255 << '\n';
for(const std::vector<uint8_t> & line : img)
{
for(uint8_t p : line)
out_s << p;
out_s << std::flush;
}
success = true;
out_s.close();
}
}
return success;
}
The isValid()
function is the same I have given with rotate90()
.
I also replaced the int
values by uint8_t
(unsigned char
) values to be more consistent as we are writing single bytes values (0-255).