I'm currently trying to cluster a great amount of data points into a given amount of clusters and I wanted to try MOA's streaming based k-means StreamKM
. A very simple example of what I'm trying to do using random data looks as follows:
StreamKM streamKM = new StreamKM();
streamKM.numClustersOption.setValue(5); // default setting
streamKM.widthOption.setValue(100000); // default setting
streamKM.prepareForUse();
for (int i = 0; i < 150000; i++) {
streamKM.trainOnInstanceImpl(randomInstance(2));
}
Clustering result = streamKM.getClusteringResult();
System.out.println("size = " + result.size());
System.out.println("dimension = " + result.dimension());
The random instances are created as follows:
static DenseInstance randomInstance(int size) {
DenseInstance instance = new DenseInstance(size);
for (int idx = 0; idx < size; idx++) {
instance.setValue(idx, Math.random());
}
return instance;
}
However, when running the given code, no clusters seem to be created:
System.out.println("size = " + result.size()); // size = 0
System.out.println("dimension = " + result.dimension()); // NPE
Is there anything else I need to take care of, or do I have a fundamental misunderstanding of the MOA clustering concepts?
I think prepareForUse()
method is not the correct method that initialize the algorithm.
Instead of streamKM.prepareForUse();
, you should use streamKM.resetLearning();
.
In short, your code should be like:
StreamKM streamKM = new StreamKM();
streamKM.numClustersOption.setValue(5); // default setting
streamKM.widthOption.setValue(100000); // default setting
streamKM. resetLearning(); // UPDATED CODE LINE !!!
for (int i = 0; i < 150000; i++) {
streamKM.trainOnInstanceImpl(randomInstance(2));
}
Clustering result = streamKM.getClusteringResult();
System.out.println("size = " + result.size());
System.out.println("dimension = " + result.dimension());