I am working on a large dataset that I need to convert to a specific format for further processing. I am looking for advice in this regard.
Sample input:
A = [0.99 -0.99
1 -1
0.55 -0.55]
Sample output:
val(:,:,1,1)=0.99
val(:,:,2,1)=-0.99
val(:,:,1,2)=1
val(:,:,2,2)=-1
val(:,:,1,3)=0.55
val(:,:,2,3)=-0.55
While working on this, I found a code inside the CNN toolbox of MATLAB R2018b
function dummifiedOut = dummify(categoricalIn)
% iDummify Convert a categorical input into a dummified output.
%
% dummifiedOut(1,1,i,j)=1 if observation j is in class i, and zero
% otherwise. Therefore, dummifiedOut will be of size [1, 1, K, N],
% where K is the number of categories and N is the number of
% observation in categoricalIn.
% Copyright 2015-2016 The MathWorks, Inc.
numObservations = numel(categoricalIn);
numCategories = numel(categories(categoricalIn));
dummifiedSize = [1, 1, numCategories, numObservations];
dummifiedOut = zeros(dummifiedSize);
categoricalIn = iMakeHorizontal( categoricalIn );
idx = sub2ind(dummifiedSize(3:4), int32(categoricalIn), 1:numObservations);
dummifiedOut(idx) = 1;
end
function vec = iMakeHorizontal( vec )
vec = reshape( vec, 1, numel( vec ) );
end
Can we modify this block of code in such a way to produce the sample output?
Either do what rinkert suggested, or just use permute
directly:
>> val = permute(A, [4,3,2,1])
val(:,:,1,1) =
0.9900
val(:,:,2,1) =
-0.9900
val(:,:,1,2) =
1
val(:,:,2,2) =
-1
val(:,:,1,3) =
0.5500
val(:,:,2,3) =
-0.5500
Note that the function which you posted requires categorical
data, whereas you have a simple double
array. If you insist on "adapting" the existing dummify
, you could do:
function dummifiedOut = dummify(categoricalIn)
dummifiedOut = zeros([1,1,size(categoricalIn)]);
dummifiedOut(:) = categoricalIn;
end
(...although, IMHO, this makes little sense.)