class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels = 3, out_channels = 16),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(in_channels = 16, out_channels = 16),
nn.ReLU(),
Flatten(),
nn.Linear(4096, 64),
nn.ReLU(),
nn.Linear(64, 10))
def forward(self, x):
return self.net(x)
I have created this model without a firm knowledge in Neural Network and I just fixed parameters until it worked in the training. I am not sure how to get the output dimension for each layer (e.g. output dimension after the first layer).
Is there an easy way to do this in Pytorch?
A simple way is:
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels = 3, out_channels = 16),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(in_channels = 16, out_channels = 16),
nn.ReLU(),
Flatten(),
nn.Linear(4096, 64),
nn.ReLU(),
nn.Linear(64, 10))
def forward(self, x):
for layer in self.net:
x = layer(x)
print(x.size())
return x
model = Model()
x = torch.randn(1, 3, 224, 224)
# Let's print it
model(x)
But be careful with the input size because you are using
nn.Linear
in your net. It would cause incompatible input size for nn.Linear if your input size is not4096
.