Search code examples
c++fortranc++14

How to write a general wrapper for calling a Fortran function in C++14 (call by reference --> call by value)


Often I have to call some Fortran routine from my C++ code. In my case, a C header is always available and contains signatures such as

double fFortran(int* a, int* b, double* someArray, int* sizeOfThatArray)

My question is: Would it be possible to write a generic C++14 wrapper fortranCall (maybe using template metaprogramming) that takes addresses where necessary and then calls the fortran function like this

double someArray[2] = {1, 4};
double result = fortranCall(fFortran, 4, 5, someArray,
    sizeof(someArray) / sizeof(someArray[0]));

which should be equivalent to

double someArray[2] = {1, 4};
int sizeOfSomeArray = sizeof(someArray) / sizeof(someArray[0]);
int a = 4;
int b = 5;
double result = fFortran(&a, &b, someArray, &sizeOfSomeArray);

I think the correct solution involves parameter packs but I can't figure out how to iterate over one and take references where needed.


Solution

  • For this answer I'll make the following assumptions:

    • parameters to the FORTRAN functions are all passed as pointers
    • the pointer addresses are to be obtained from the parameters passed to the fortranCall function.
    • Array pointer parameters will always be followed by a pointer to the size of the array
    • We want to preserve the order of the parameters.

    Example calls:

    // So, given function signature
    double fFortran(int* a, int* b, double* someArray, int* sizeOfThatArray);
    // we would like to call with:
    fortranCall(fFortran, 4, 5, someArray);
    
    // Likewise, given
    fFortranTwoArrays(double* arrayA, int* size_of_A, double* arrayB, int* size_of_B);
    // we would like to call with
    fortranCall(fFortranTwoArrays, someArray, some_other_Array);
    

    The following program will make the calls as shown above:

    #include <tuple>
    #include <type_traits>
    
    // Functions to call eventually
    double fFortran(int* a, int* b, double* someArray, int* sizeOfThatArray)
    { 
        return 0.0; 
    }
    
    double fFortranTwoArrays(double* arrayA, int* size_of_A, double* arrayB, int* size_of_B)
    { 
        return 0.0; 
    }
    
    // If T is an array 
    // then make a std::tuple with two parameters
    //   pointer to first of T and 
    //   pointer to extent of T
    template<
        typename T,
        typename std::enable_if <
            std::is_array<T>{},
            int
        >::type Extent = std::extent<T>::value,
        typename Ptr = typename std::decay<T>::type
    >
    auto make_my_tuple(T& t)
    {
        static auto extent = Extent;
        Ptr ptr = &t[0];
        return std::make_tuple(ptr, &extent);
    }
    
    // If T is not an array 
    // then make a std::tuple with a single parameter
    //   pointer to T
    template<typename T,
        typename std::enable_if <
            !std::is_array<T>{},
            int
        >::type = 0 
    >
    auto make_my_tuple(T& t)
    {
        return std::make_tuple(&t);
    }
    
    template<typename F, typename... Targs>
    auto fortranCall(F& f, Targs&& ... args)
    {
        // Make a single tuple with all the parameters.
        auto parameters = std::tuple_cat(make_my_tuple(args)...);
    
        // Arrays were each expanded to 
        // two pointer parameters(location and size).
        // Other parameters will pass as a single pointer
        return std::apply(f,parameters);
    }
    
    int main()
    {
        double someArray[2] = {1, 4};
        double result = fortranCall(fFortran, 4, 5, someArray);
    
        double some_other_Array[] = {6,7,8,9,10};
        auto result2 = fortranCall(fFortranTwoArrays, someArray, some_other_Array);
    }
    

    std::apply is C++17. If you want to make it work in C++14, use the example implementation from https://en.cppreference.com/w/cpp/utility/apply

    namespace detail {
    template <class F, class Tuple, std::size_t... I>
    constexpr decltype(auto) apply_impl(F&& f, Tuple&& t, std::index_sequence<I...>)
    {
        return std::invoke(std::forward<F>(f), std::get<I>(std::forward<Tuple>(t))...);
    }
    }  // namespace detail
    
    template <class F, class Tuple>
    constexpr decltype(auto) apply(F&& f, Tuple&& t)
    {
        return detail::apply_impl(
            std::forward<F>(f), std::forward<Tuple>(t),
            std::make_index_sequence<std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
    }
    

    and use invoke from the backport by Martin Moene (https://github.com/martinmoene/invoke-lite)