I'm trying to build a super fast mode function for R to use for aggregating large categorical datasets. The function should take vector input of all supported R types and return the mode. I have read This post, This Help-page and others, but I was not able to make the function take in all R data types. My code now works for numeric vectors, I am relying on Rcpp sugar wrapper functions:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int Mode(NumericVector x, bool narm = false)
{
if (narm) x = x[!is_na(x)];
NumericVector ux = unique(x);
int y = ux[which_max(table(match(x, ux)))];
return y;
}
In addition I was wondering if the 'narm' argument can be renamed 'na.rm' without giving errors, and of course if there is a faster way to code a mode function in C++, I would be grateful to know about it.
In order to make the function work for any vector input, you could implement @JosephWood's algorithm for any data type you want to support and call it from a switch(TYPEOF(x))
. But that would be lots of code duplication. Instead, it is better to make a generic function that can work on any Vector<RTYPE>
argument. If we follow R's paradigm that everything is a vector and let the function also return a Vector<RTYPE>
, then we can make use of RCPP_RETURN_VECTOR
. Note that we need C++11 to be able to pass additional arguments to the function called by RCPP_RETURN_VECTOR
. One tricky thing is that you need the storage type for Vector<RTYPE>
in order to create a suitable std::unordered_map
. Here Rcpp::traits::storage_type<RTYPE>::type
comes to the rescue. However, std::unordered_map
does not know how to deal with complex numbers from R. For simplicity, I am disabling this special case.
Putting it all together:
#include <Rcpp.h>
using namespace Rcpp ;
// [[Rcpp::plugins(cpp11)]]
#include <unordered_map>
template <int RTYPE>
Vector<RTYPE> fastModeImpl(Vector<RTYPE> x, bool narm){
if (narm) x = x[!is_na(x)];
int myMax = 1;
Vector<RTYPE> myMode(1);
// special case for factors == INTSXP with "class" and "levels" attribute
if (x.hasAttribute("levels")){
myMode.attr("class") = x.attr("class");
myMode.attr("levels") = x.attr("levels");
}
std::unordered_map<typename Rcpp::traits::storage_type<RTYPE>::type, int> modeMap;
modeMap.reserve(x.size());
for (std::size_t i = 0, len = x.size(); i < len; ++i) {
auto it = modeMap.find(x[i]);
if (it != modeMap.end()) {
++(it->second);
if (it->second > myMax) {
myMax = it->second;
myMode[0] = x[i];
}
} else {
modeMap.insert({x[i], 1});
}
}
return myMode;
}
template <>
Vector<CPLXSXP> fastModeImpl(Vector<CPLXSXP> x, bool narm) {
stop("Not supported SEXP type!");
}
// [[Rcpp::export]]
SEXP fastMode( SEXP x, bool narm = false ){
RCPP_RETURN_VECTOR(fastModeImpl, x, narm);
}
/*** R
set.seed(1234)
s <- sample(1e5, replace = TRUE)
fastMode(s)
fastMode(s + 0.1)
l <- sample(c(TRUE, FALSE), 11, replace = TRUE)
fastMode(l)
c <- sample(letters, 1e5, replace = TRUE)
fastMode(c)
f <- as.factor(c)
fastMode(f)
*/
Output:
> set.seed(1234)
> s <- sample(1e5, replace = TRUE)
> fastMode(s)
[1] 85433
> fastMode(s + 0.1)
[1] 85433.1
> l <- sample(c(TRUE, FALSE), 11, replace = TRUE)
> fastMode(l)
[1] TRUE
> c <- sample(letters, 1e5, replace = TRUE)
> fastMode(c)
[1] "z"
> f <- as.factor(c)
> fastMode(f)
[1] z
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z
As noted above, the used algorithm comes from Joseph Wood's answer, which has been explicitly dual-licensed under CC-BY-SA and GPL >= 2. I am following Joseph and hereby license the code in this answer under the GPL (version 2 or later) in addition to the implicit CC-BY-SA license.