I'm trying to parse a CSV file using jackson-dataformat-csv
and I want to map the numeric column to the Number java type.
CsvSchema schema = CsvSchema.builder().setUseHeader(true)
.addColumn("firstName", CsvSchema.ColumnType.STRING)
.addColumn("lastName", CsvSchema.ColumnType.STRING)
.addColumn("age", CsvSchema.ColumnType.NUMBER)
.build();
CsvMapper csvMapper = new CsvMapper();
MappingIterator<Map<String, Object>> mappingIterator = csvMapper
.readerFor(Map.class)
.with(schema)
.readValues(is);
while (mappingIterator.hasNext()) {
Map<String, Object> entryMap = mappingIterator.next();
Number age = (Number) entryMap.get("age");
}
I'm expecting entryMap.get("age")
should be a Number
, but I get String
instead.
My CSV file:
firstName,lastName,age
John,Doe,21
Error,Name,-10
I know that CsvSchema
works fine with POJOs, but I need to process arbitrary CSV schemas, so I can't create a new java class for every case.
Any way to parse CSV into a typed Map
or Array
?
You can use univocity-parsers for this sort of thing. It's faster and way more flexible:
CsvParserSettingssettings = new CsvParserSettings(); //configure the parser if needed
CsvParser parser = new CsvParser(settings);
for (Record record : parser.iterateRecords(is)) {
Short age = record.getShort("age");
}
To get a typed map, tell the parser what is the type of the columns you are working with:
parser.getRecordMetadata().setTypeOfColumns(Short.class, "age" /*, and other column names*/);
//to get 0 instead of nulls when the field is empty in the file:
parser.getRecordMetadata().setDefaultValueOfColumns("0", "age", /*, and other column names*/);
// then parse
for (Record record : parser.iterateRecords(is)) {
Map<String,Object> map = record.toFieldMap();
}
Hope this helps
Disclaimer: I'm the author of this library. It's open source and free (Apache 2.0 license)