I have a dataframe like this
data = [(("ID1", {'A': 1, 'B': 2}))]
df = spark.createDataFrame(data, ["ID", "Coll"])
df.show()
+---+----------------+
| ID| Coll|
+---+----------------+
|ID1|[A -> 1, B -> 2]|
+---+----------------+
df.printSchema()
root
|-- ID: string (nullable = true)
|-- Coll: map (nullable = true)
| |-- key: string
| |-- value: long (valueContainsNull = true)
I want to explode the 'Coll' column such that
+---+-----------+
| ID| Key| Value|
+---+-----------+
|ID1| A| 1|
|ID1| B| 2|
+---+-----------+
I am trying to do this in pyspark
I am successful if I use only one column, however I want the ID column as well
df.select(explode("Coll").alias("x", "y")).show()
+---+---+
| x| y|
+---+---+
| A| 1|
| B| 2|
+---+---+
Simply add the ID column to the select
and it should work:
df.select("id", explode("Coll").alias("x", "y"))