Suppose we'd like to have a "proper" minus
on Nat
s, requiring m <= n
for n `minus` m
to make sense:
%hide minus
minus : (n, m : Nat) -> { auto prf : m `LTE` n } -> Nat
minus { prf = LTEZero } n Z = n
minus { prf = LTESucc prevPrf } (S n) (S m) = minus n m
Now let's try to prove the following lemma, stating that (n + (1 + m)) - k = ((1 + n) + m) - k
, assuming both sides are valid:
minusPlusTossS : (n, m, k : Nat) ->
{ auto prf1 : k `LTE` n + S m } ->
{ auto prf2 : k `LTE` S n + m } ->
minus (n + S m) k = minus (S n + m) k
The goal suggests the following sublemma might help:
plusTossS : (n, m : Nat) -> n + S m = S n + m
plusTossS Z m = Refl
plusTossS (S n) m = cong $ plusTossS n m
so we try to use it:
minusPlusTossS n m k =
let tossPrf = plusTossS n m
in rewrite tossPrf in ?rhs
And here we fail:
When checking right hand side of minusPlusTossS with expected type
minus (n + S m) k = minus (S n + m) k
When checking argument prf to function Main.minus:
Type mismatch between
LTE k (S n + m) (Type of prf2)
and
LTE k replaced (Expected type)
Specifically:
Type mismatch between
S (plus n m)
and
replaced
If I understand this error correctly, it just means that it tries to rewrite the RHS of the target equality (which is minus { prf = prf2 } (S n + m) k
) to minus { prf = prf2 } (n + S m) k
and fails. Rightfully, of course, since prf
is a proof for a different inequality! And while replace
could be used to produce a proof of (S n + m) k
(or prf1
would do as well), it does not look like it's possible to simultaneously rewrite and change the proof object so that it matches the rewrite.
How do I work around this? Or, more generally, how do I prove this lemma?
Ok, I guess I solved it. Bottom line: if you don't know what to do, do a lemma!
So we have a proof of two minuends n1, n2
being equal, and we need to produce a proof of n1 `minus` m = n2 `minus` m
. Let's write this down!
minusReflLeft : { n1, n2, m : Nat } -> (prf : n1 = n2) -> (prf_n1 : m `LTE` n1) -> (prf_n2 : m `LTE` n2) -> n1 `minus` m = n2 `minus` m
minusReflLeft Refl LTEZero LTEZero = Refl
minusReflLeft Refl (LTESucc prev1) (LTESucc prev2) = minusReflLeft Refl prev1 prev2
I don't even need plusTossS
anymore, which can be replaced by a more directly applicable lemma:
plusRightS : (n, m : Nat) -> n + S m = S (n + m)
plusRightS Z m = Refl
plusRightS (S n) m = cong $ plusRightS n m
After that, the original one becomes trivial:
minusPlusTossS : (n, m, k : Nat) ->
{ auto prf1 : k `LTE` n + S m } ->
{ auto prf2 : k `LTE` S n + m } ->
minus (n + S m) k = minus (S n + m) k
minusPlusTossS {prf1} {prf2} n m k = minusReflLeft (plusRightS n m) prf1 prf2