I'm developing a stack layer on microcontroller STM32L433 that uses the CAN protocol; a fundamental part of the stack is the authentication of the devices.
During authentication it can occur that two (or more) devices start to send a CAN message (authentication message) with the same identifier and different payload (true random value). In this case every device should be able to detect if this message was sent first from another device.
I have studied this case and three situations can occur:
My question is (related to the situation 3): Is the message in the transmission MAILBOX in the SCHEDULED state set in the TRANSMISSION state after that the code in the receiving ISR routine is executed or is this thing not guaranteed?
To answer on your third case first, no it is not guaranteed that your message is not on the bus, while receiving. Because interrupts might have some latency too, and within this time, the mailbox might be able to go ahead with transmission.
Your "authentication" also sounds a bit troublesome, since nobody from outside could also actually decide which ECU was actually the one that won the arbitration and actually sent that specific message.
We have ECUs in vehicles which decide at runtime, according to certain methods, where they are mounted by pin and some CAN reception, but only in listen mode. TX is actually disabled in the stack. After that, detection has completed, we switch configurations and restart the communications stack and further initialize the software going up.
But these "setups" are usually defined beforehand, e.g. due to master/slave (vehicle/private bus communication), or maybe some connector pins connected to GND / OPEN / UBAT, or maybe some bus message which tells on which bus it is on.
That seems to be more reliable than your method.