I am using functors to generate compile time calculated code in the following way (I apologize for the long code, but it is the only way I have found to reproduce the behavior):
#include <array>
#include <tuple>
template <int order>
constexpr auto compute (const double h)
{
std::tuple<std::array<double,order>,
std::array<double,order> > paw{};
auto xtab = std::get<0>(paw).data();
auto weight = std::get<1>(paw).data();
if constexpr ( order == 3 )
{
xtab[0] = - 1.0E+00;
xtab[1] = 0.0E+00;
xtab[2] = 1.0E+00;
weight[0] = 1.0 / 3.0E+00;
weight[1] = 4.0 / 3.0E+00;
weight[2] = 1.0 / 3.0E+00;
}
else if constexpr ( order == 4 )
{
xtab[0] = - 1.0E+00;
xtab[1] = - 0.447213595499957939281834733746E+00;
xtab[2] = 0.447213595499957939281834733746E+00;
xtab[3] = 1.0E+00;
weight[0] = 1.0E+00 / 6.0E+00;
weight[1] = 5.0E+00 / 6.0E+00;
weight[2] = 5.0E+00 / 6.0E+00;
weight[3] = 1.0E+00 / 6.0E+00;
}
for (auto & el : std::get<0>(paw))
el = (el + 1.)/2. * h ;
for (auto & el : std::get<1>(paw))
el = el/2. * h ;
return paw;
}
template <std::size_t n>
class Basis
{
public:
constexpr Basis(const double h_) :
h(h_),
paw(compute<n>(h)),
coeffs(std::array<double,n>())
{}
const double h ;
const std::tuple<std::array<double,n>,
std::array<double,n> > paw ;
const std::array<double,n> coeffs ;
constexpr double operator () (int i, double x) const
{
return 1. ;
}
};
template <std::size_t n,std::size_t p,typename Ltype,typename number=double>
class Functor
{
public:
constexpr Functor(const Ltype L_):
L(L_)
{}
const Ltype L ;
constexpr auto operator()(const auto v) const
{
const auto l = L;
// const auto l = L();
std::array<std::array<number,p+1>,p+1> CM{},CM0{},FM{};
const auto basis = Basis<p+1>(l);
typename std::remove_const<typename std::remove_reference<decltype(v)>::type>::type w{};
for (auto i = 0u; i < p + 1; ++i)
CM0[i][0] += l;
for (auto i = 0u ; i < p+1 ; ++i)
for (auto j = 0u ; j < p+1 ; ++j)
{
w[i] += CM0[i][j]*v[j];
}
for (auto b = 1u ; b < n-1 ; ++b)
for (auto i = 0u ; i < p+1 ; ++i)
for (auto j = 0u ; j < p+1 ; ++j)
{
w[b*(p+1)+i] += CM[i][j]*v[b*(p+1)+j];
w[b*(p+1)+i] += FM[i][j]*v[(b+1)*(p+1)+j];
}
return w ;
}
};
int main(int argc,char *argv[])
{
const auto nel = 4u;
const auto p = 2u;
std::array<double,nel*(p+1)> x{} ;
constexpr auto L = 1.;
// constexpr auto L = [](){return 1.;};
const auto A = Functor<nel,p,decltype(L)>(L);
const volatile auto y = A(x);
return 0;
}
I compile using GCC 8.2.0 with the flags:
-march=native -std=c++1z -fconcepts -Ofast -Wa,-adhln
And when looking at the generated assembly, the calculation is being executed at runtime.
If I change the two lines that are commented for the lines immediately below, I find that the code is indeed being executed at compile time and just the value of the volatile variable is placed in the assembly.
I tried to generate a smaller example that reproduces the behavior but small changes in the code indeed calculate at compile time.
I somehow understand why providing constexpr
lambdas helps, but I would like to understand why providing a double would not work in this case. Ideally I wouldn't like to provide lambdas because it makes my frontend messier.
This code is part of a very large code base, so please disregard what the code is actually calculating, I created this example to show the behavior and nothing more.
What would be the right way to provide a double to the functor and store it as a const
member variable without changing the compile-time behavior?
Why do small modifications in the compute()
function (for instance, other small changes do so as well) do indeed produce compile time code?
I would like to understand what are the actual conditions for GCC to provide these compile-time calculations, as the actual application I am working in requires it.
Thanks!
Non sure to understand when your code is executed run-time and when is executed compile-time, anyway the rule of the C++ language (not only g++ and ignoring the as-if rule) is that a constexpr
function
constexpr
variable, not-type template arguments, C-style arrays dimensions, static_assert()
tests)If you're interested in
const volatile auto y = A(x);
it seems to me we are in the grey area and the compiler can choose if compute the initial value for y
compile time or run-time.
If you want a y
initialized compile-time, I suppose you can obtain this defining it (and also preceding variables) constexpr
constexpr auto nel = 4u;
constexpr auto p = 2u;
constexpr std::array<double,nel*(p+1)> x{} ;
constexpr auto L = 1.;
// constexpr auto L = [](){return 1.;};
constexpr auto A = Functor<nel,p,decltype(L)>(L);
constexpr volatile auto y = A(x);