I'm trying to feed a numpy array into the Process_img (adaptivethreshold)
function. The numpy array has a data type of uint8
and 3 dimensions
, which should be accepted by the function.
I am getting the following error message. I've tried converting it to grayscale
but doesn't seem to work and i've tried numpy.ndarray.flatten
(1 dimension)
, which gets it functioning but doesn't display it back correctly.
I end up getting a long gray bar. I'm not sure of what else i should do. Any help is appreciated.
error: OpenCV(3.4.4) C:\projects\opencv-python\opencv\modules\imgproc\src\thresh.cpp:1524: error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'cv::adaptiveThreshold'
import time
import cv2
import mss
import numpy
# Attempts to change the image to black and white relative to a general area
def process_img(image):
processed_img = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
return processed_img
while (True):
last_time = time.time()
# Takes a snapshot of the screen location
with mss.mss() as sct:
monitor = {"top": 40, "left": 0, "width": 960, "height": 540}
# Converts the snapshot to a numpy array
npm = numpy.array(sct.grab(monitor))
# Checks the data type of the numpy array
print (npm.dtype)
# Feeds the numpy array into the "process_img" function
new_screen = process_img(npm)
# Displays the processed image
cv2.imshow('Window',new_screen)
#This keeps the screen displayed over time instead of flickering 1ms basically the screen's refresh rate
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
Change your process_img()
function to convert the image to grayscale:
def process_img(image):
image = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
return cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
Also, you should move with mss.mss() as sct:
outside the while
to keep performant:
import time
import cv2
import mss
import numpy
# Attempts to change the image to black and white relative to a general area
def process_img(image):
image = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
return cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
with mss.mss() as sct:
# Takes a snapshot of the screen location
monitor = {"top": 40, "left": 0, "width": 960, "height": 540}
while True:
last_time = time.time()
# Converts the snapshot to a numpy array
npm = numpy.array(sct.grab(monitor))
# Checks the data type of the numpy array
print(npm.dtype)
# Feeds the numpy array into the "process_img" function
new_screen = process_img(npm)
# Displays the processed image
cv2.imshow("Window", new_screen)
# This keeps the screen displayed over time instead of flickering 1ms basically the screen's refresh rate
if cv2.waitKey(1) & 0xFF == ord("q"):
cv2.destroyAllWindows()
break