We are building a processor for our final project. The control unit is a state machine, but it seems to get stuck in states for longer than it should, and thus it repeats instructions.
We are using Vivado 2015.4 and the Nexys4 board.
So, with a single line of instructions to store a value onto the 7-segments loaded up into the instruction memory, the states go:
Fetch =>
Fetch =>
Fetch =>
L_S_D (Load/Store Decode) =>
L_S_E (Load/Store Execute) =>
S_Mem (Store Memory Access) =>
Fetch =>
L_S_D =>
L_S_E =>
S_Mem =>
Fetch =>
L_S_D =>
L_S_E =>
Fetch (forever)
On the two complete run-throughs, the seven-segments display. On the third, incomplete run-through, they do not.
I'm attaching the state machine (relevant states) and the program counter-related code, because I think that's where the problem is.
State machine:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity Fred is
Port ( Inst : in STD_LOGIC_vector (31 downto 21);
clk : in std_logic;
rst : in std_logic;
Reg2Loc : out std_logic;
ALUSRC : out std_logic;
MemtoReg : out std_logic;
RegWrite : out std_logic;
Branch : out std_logic;
ALUOp : out std_logic_vector (1 downto 0);
UnconB : out std_logic;
en : out std_logic;
wea : out std_logic;
PCWrite : out std_logic;
REGCEA : out std_logic;
LEDCode : out std_logic_vector (4 downto 0));
end Fred;
architecture Behavioral of Fred is
Type type_fstate is (Fetch, L_S_D, L_S_E, L_Mem, S_Mem,
L_WB, R_I_D, I_E, R_E, I_WB, R_WB, B_E, CBZ_D, B_WB, CBZ_E,
CBZ_WB);
attribute enum_encoding : string;
attribute enum_encoding of type_fstate : type is "one-hot";
signal current_state : type_fstate;
signal next_state : type_fstate;
begin
clockprocess : process (clk, rst, current_state)
begin
if rst = '1' then
next_state <= Fetch;
elsif clk'EVENT and clk = '1' then
next_state <= current_state;
end if;
end process clockprocess;
state_logic: process (next_state)
begin
case next_state is
when Fetch => --00001
if ((Inst = "11111000010")) then --LDUR
current_state <= L_S_D;
elsif ((Inst = "11111000000")) then --STUR
current_state <= L_S_D;
--Additional State Logic Here
else
current_state <= Fetch;
end if;
when L_S_D => --00010
current_state <= L_S_E;
when L_S_E => --00011
if ((Inst = "11111000010")) then
current_state <= L_Mem;
elsif ((Inst = "11111000000")) then
current_state <= S_Mem;
end if;
when S_Mem => --00110
current_state <= Fetch;
--Additional States Here
when others =>
current_state <= Fetch;
end case;
end process state_logic;
output_logic : process (next_state)
begin
case next_state is
when Fetch =>
Reg2Loc <= '0';
ALUSRC <= '0';
MemtoReg <= '0';
RegWrite <= '0';
Branch <= '0';
ALUOp <= "00";
UnconB <= '0';
en <= '0';
wea <= '0';
PCWrite <= '0';
REGCEA <= '1';
LEDCode <= "00001";
when L_S_D =>
Reg2Loc <= '1';
ALUSRC <= '0';
MemtoReg <= '0';
RegWrite <= '0';
Branch <= '0';
ALUOp <= "00";
UnconB <= '0';
en <= '0';
wea <= '0';
PCWrite <= '0';
REGCEA <= '0';
LEDCode <= "00010";
when L_S_E =>
Reg2Loc <= '1';
ALUSRC <= '1';
MemtoReg <= '0';
RegWrite <= '0';
Branch <= '0';
ALUOp <= "00";
UnconB <= '0';
en <= '0';
wea <= '0';
PCWrite <= '1';
REGCEA <= '0';
LEDCode <= "00011";
when S_Mem =>
Reg2Loc <= '1';
ALUSRC <= '1';
MemtoReg <= '0';
RegWrite <= '0';
Branch <= '0';
ALUOp <= "00";
UnconB <= '0';
en <= '1';
wea <= '1';
PCWrite <= '0';
REGCEA <= '0';
LEDCode <= "00110";
--Additional State Outputs Here
when others =>
Reg2Loc <= '0';
ALUSRC <= '0';
MemtoReg <= '0';
RegWrite <= '0';
Branch <= '0';
ALUOp <= "00";
UnconB <= '0';
en <= '0';
wea <= '0';
PCWrite <= '0';
REGCEA <= '0';
LEDCode <= "00000";
end case;
end process output_logic;
end Behavioral;
Datapath:
entity Datapath is
Port (BTNClock : in STD_LOGIC;
clock : in STD_LOGIC;
UncondBranch : in STD_LOGIC;
CondBranch : in STD_LOGIC;
RRtwoSelect : in STD_LOGIC;
RegWriteSelect : in STD_LOGIC;
ALUSource : in STD_LOGIC;
ALUOpCode : in STD_LOGIC_VECTOR(1 downto 0);
WriteSelect : in STD_LOGIC;
MemWrite : in STD_LOGIC;
REGCEA : in STD_LOGIC;
PCWrite : in STD_LOGIC;
seg_select : out STD_LOGIC_vector(6 downto 0);
anode_select : out STD_LOGIC_vector(7 downto 0);
ins_out : out STD_LOGIC_VECTOR(31 downto 0);
RAMSelect : in STD_LOGIC;
ALUEleven : out STD_LOGIC;
REGEleven : out STD_LOGIC;
SwitchReset : in STD_LOGIC);
end Datapath;
architecture Behavioral of Datapath is
signal PC : STD_LOGIC_VECTOR(9 downto 0);
signal instruction : STD_LOGIC_VECTOR(31 downto 0);
signal BranchSelect : STD_LOGIC;
signal ZeroBranch : STD_LOGIC;
signal RRtwo : STD_LOGIC_VECTOR(4 downto 0);
signal RegDataOut1 : STD_LOGIC_VECTOR(63 downto 0);
signal RegDataOut2 : STD_LOGIC_VECTOR(63 downto 0);
signal ALUMuxOut : STD_LOGIC_VECTOR(63 downto 0);
signal SignExtendOut : STD_LOGIC_VECTOR(63 downto 0);
signal BranchExtend : STD_LOGIC_VECTOR(9 downto 0);
signal ALUOut : STD_LOGIC_VECTOR(63 downto 0);
signal ALUZero : STD_LOGIC;
signal MemoryOut : STD_LOGIC_VECTOR(63 downto 0);
signal WriteMuxOut : STD_LOGIC_VECTOR(63 downto 0);
signal Branch : STD_LOGIC_VECTOR(9 downto 0);
signal PCNext : STD_LOGIC_VECTOR(9 downto 0);
signal PCIncrement : STD_LOGIC_VECTOR(9 downto 0);
signal ALUCommand : STD_LOGIC_VECTOR(3 downto 0);
signal InstEn : STD_LOGIC := '1';
signal OnlySeven : STD_LOGIC_VECTOR(0 downto 0);
signal SevSegReset : STD_LOGIC := '0';
begin
OnlySeven(0) <= MemWrite and not ALUOut(11);
BranchSelect <= UncondBranch or ZeroBranch;
ZeroBranch <= CondBranch and ALUZero;
ins_out <= instruction;
ALUEleven <= ALUout(11);
REGEleven <= RegDataOut1(11);
--Program Counter
PCReg : PCounter port map ( clk => BTNClock,
wea => PCWrite,
newaddress => PCNext,
thisaddress => PC);
--Incremental adder
IncAddr : B_adder port map ( a => PC,
x => PCIncrement);
--Branch Adder
BranchAddr : In_adder port map ( a => PC,
b => BranchExtend,
x => Branch);
--Next Instruction Address Mux
NextPCMux : nine_mux port map ( s => BranchSelect,
in1 => PCIncrement,
in2 => Branch,
output => PCNext);
--Additional Datapath Elements Here
end Behavioral;
Program Counter:
entity PCounter is
Port ( clk : in STD_LOGIC; --clock
wea : in STD_LOGIC; --write enable
newaddress : in STD_LOGIC_VECTOR (9 downto 0); --new address coming in
thisaddress : out STD_LOGIC_VECTOR (9 downto 0) --current address to be executed
);
end PCounter;
architecture Behavioral of PCounter is
signal reg: std_logic_vector(9 downto 0); --internal register storage
begin
process(clk) --nothing happens if this register isn't selected
begin
if clk'EVENT and clk = '1' then
thisaddress <= reg; --send out currently saved address
if wea = '1' then
reg <= newaddress; --and set register to next address
end if;
else
reg <= reg; --otherwise, maintain current value
end if;
end process;
end Behavioral;
This adder just adds one to the value currently in the PC:
entity B_adder is
Port ( a : in STD_LOGIC_VECTOR (9 downto 0);
x : out STD_LOGIC_VECTOR (9 downto 0));
end B_adder;
architecture Behavioral of B_adder is
begin
x <= a + 1;
end Behavioral;
This little mux will select if the next address is coming from the branch adder (not included here) or from the incremental adder above:
entity nine_mux is
Port ( s : in STD_LOGIC;
in1 : in STD_LOGIC_VECTOR (9 downto 0);
in2 : in STD_LOGIC_VECTOR (9 downto 0);
output : out STD_LOGIC_VECTOR (9 downto 0));
end nine_mux;
architecture Behavioral of nine_mux is
begin
with s select
output <= in1 when '0',
in2 when others;
end Behavioral;
And this is how the control unit is mapped to the datapath:
entity WholeThing is
Port ( BTNClock : in STD_LOGIC;
BTNReset : in STD_LOGIC;
SwitchReset : in STD_LOGIC;
clock : in STD_Logic;
LEDs : out STD_LOGIC_VECTOR(4 downto 0);
seg : out STD_LOGIC_vector(6 downto 0);
an : out STD_LOGIC_vector(7 downto 0);
alu11 : out STD_LOGIC;
reg11 : out STD_LOGIC
);
end WholeThing;
architecture Behavioral of WholeThing is
signal instruction : STD_LOGIC_VECTOR(31 downto 0);
signal Reg2Loc : STD_LOGIC;
signal ALUSRC : std_logic;
signal MemtoReg : std_logic;
signal RegWrite : std_logic;
signal Branch : std_logic;
signal ALUOp : std_logic_vector (1 downto 0);
signal UnconB : std_logic;
signal en : std_logic;
signal wea : std_logic;
signal PCWrite : std_logic;
signal REGCEA : std_logic;
signal SwRst : STD_LOGIC;
begin
--SwitchReset <= SwRst;
--Control Unit
CU : Fred port map ( Inst => instruction(31 downto 21),
clk => BTNClock,
rst => BTNReset,
Reg2Loc => Reg2Loc,
ALUSRC => ALUSRC,
MemtoReg => MemtoReg,
RegWrite =>RegWrite,
Branch => Branch,
ALUOp => ALUOp,
UnconB => UnconB,
en => en,
wea => wea,
PCWrite => PCWrite,
REGCEA => REGCEA,
LEDCode => LEDs);
--Datapath
DP : Datapath port map (BTNClock => BTNClock,
clock => clock,
UncondBranch => UnconB,
CondBranch => Branch,
RRtwoSelect => Reg2Loc,
RegWriteSelect => RegWrite,
ALUSource => ALUSRC,
ALUOpCode => ALUOp,
WriteSelect => MemtoReg,
MemWrite => wea,
REGCEA => REGCEA,
PCWrite => PCWrite,
seg_select => seg,
anode_select => an,
ins_out => instruction,
RAMSelect => en,
ALUEleven => alu11,
REGEleven => reg11,
SwitchReset => SwitchReset
);
end Behavioral;
Your second process should implement default assignments to spare lots of unnecessary else branches where you define self-edged of your FSM graph. Because you missed that, your FSM creates additional latches for signal current_state
! Check your synthesis report for latch warning and you might find multiple of them.
You mixed up current_state
and next_state
. The meaning of the signals does not
reflect your code! Your case statement needs to switch on current_state
.
Don't use the 3-process pattern to describe an FSM. This is a nightmare of code readability and maintenance! One one can read and verify the behavior of this FSM form.
You're using the attribute enum_encoding in a wrong way:
fsm_encoding
to the state signalfsm_encoding
with value user
to your state signal and apply enum_encoding
with a space separated list of binary values to your state type.Don't use asynchronous reset. Synchronous, clocked processes have only one signal in the sensitivity list!
Combinational processes need to list all read signals in there sensitivity list!
You shouldn't use clk'EVENT and clk = '1'
. Use rising_edge(clk)
instead.
If you switch on the same signal multiple times, use a case statement, but no if-elsif construct!
Your eyes and probably also your LEDs will not be fast enough to see and display LEDCode
.
Corrected code:
architecture Behavioral of Fred is
attribute fsm_encoding : string;
type type_fstate is (
Fetch, L_S_D, L_S_E, L_Mem, S_Mem,
L_WB, R_I_D, I_E, R_E, I_WB, R_WB, B_E, CBZ_D, B_WB, CBZ_E,
CBZ_WB);
signal current_state : type_fstate := Fetch;
signal next_state : type_fstate;
attribute fsm_encoding of current_state : signal is "one-hot";
begin
clockprocess : process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
current_state <= Fetch;
else
current_state <= next_state;
end if;
end if;
end process;
state_logic: process (current_state, Inst)
begin
next_state <= current_state;
Reg2Loc <= '0';
ALUSRC <= '0';
MemtoReg <= '0';
RegWrite <= '0';
Branch <= '0';
ALUOp <= "00";
UnconB <= '0';
en <= '0';
wea <= '0';
PCWrite <= '0';
REGCEA <= '0';
LEDCode <= "00000";
case current_state is
when Fetch => --00001
REGCEA <= '1';
LEDCode <= "00001";
case Inst is
when "11111000010" => --LDUR
next_state <= L_S_D;
when "11111000000" => --STUR
next_state <= L_S_D;
--Additional State Logic Here
when others =>
next_state <= Fetch;
end case;
when L_S_D => --00010
Reg2Loc <= '1';
LEDCode <= "00010";
next_state <= L_S_E;
when L_S_E => --00011
Reg2Loc <= '1';
ALUSRC <= '1';
PCWrite <= '1';
LEDCode <= "00011";
case Inst is
when "11111000010" =>
next_state <= L_Mem;
when "11111000000" =>
next_state <= S_Mem;
when others =>
-- ???
end case;
when S_Mem => --00110
Reg2Loc <= '1';
ALUSRC <= '1';
en <= '1';
wea <= '1';
LEDCode <= "00110";
next_state <= Fetch;
--Additional States Here
when others =>
next_state <= Fetch;
end case;
end process;
end architecture;
Never assign something like this reg <= reg
in VHDL!
You're using arithmetic on type std_logic_vector
. This operation is:
synopsys.std_logic_unsigned
, which shouldn't be used at all. Use package ieee.numeric_std
and types signed
/unsigned
if you need arithmetic operations.Your program counter (PC) does not count (yet?). Based on the single responsibility principle, your PC should be able to:
Your PC assigns the output thisaddress
with one cycle of delay. Normally, this will break any CPU functionality ...
As you're going to implement your design on an FPGA device, make sure to initialize all signals that are translated to memory (e.g. registers) with appropriate init values.
Improved Code:
architecture Behavioral of PCounter is
signal reg: unsigned(9 downto 0) := (others => '0');
begin
process(clk)
begin
if rising_edge(clk) then
if wea = '1' then
reg <= unsigned(newaddress);
end if;
end if;
end process;
thisaddress <= reg;
end architecture;
B_adder
Is is wise to implement a one-line in an entity consuming 9 lines of code?
Moreover, your code is describing an incrementer, but not an adder.
A Multiplexer is not described with a with ... select
statement. This will create a priority logic like a chain of if-elseif branches.
output <= in1 when (s = '0') else in2;
As this is now a size independent one-liner, screw the nine_mux entity.