Search code examples
keraskeras-layer

Keras: Dimensions must be equal


I was doing some classification with keras, when met this error:

InvalidArgumentError: Dimensions must be equal, but are 256 and 8 for 'dense_185/MatMul' (op: 'MatMul') with input shapes: [?,256], [8,300].

It surprised me because the dimension of the input to the dense is 1.

This is a sequential model with a few custom layers. I have no idea why 8 appears in the error of dense layer.

class Residual(Layer):
    def __init__(self,input_shape,**kwargs):
        super(Residual, self).__init__(**kwargs)
        self.input_shapes = input_shape

    def call(self, x):
        print(np.shape(x)) #    (?, 128, 8) 
        first_layer =   Conv1D(256, 4, activation='relu', input_shape = self.input_shapes)(x)
        print(np.shape(first_layer))     (?, 125, 256)
        x =             Conv1D(256, 4, activation='relu')(first_layer)
        print(np.shape(x)) (?, 122, 256) 
        x =             Conv1D(256, 4, activation='relu')(x)
        print(np.shape(x)) (?, 119, 256)
        x =             ZeroPadding1D(padding=3)(x)
        residual =      Add()([x, first_layer])
        x = Activation("relu")(residual)
        return x

class Pooling(Layer):
    def __init__(self,**kwargs):
        super(Pooling, self).__init__(**kwargs)

    def call(self, x):
        first_layer =   GlobalMaxPooling1D(data_format='channels_last')(x)
        second_layer =  GlobalAveragePooling1D(data_format='channels_last')(x)
        pooling =      Add()([first_layer, second_layer])
        print(np.shape(pooling)) (?, 256)
        return pooling

model = Sequential()
model.add(Residual(input_shape=(128,8)))
model.add(Pooling())
model.add(Dense(300, activation='relu'))
model.add(Dense(150, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(np.array(dataset_data), dataset_target, epochs=1000, validation_split=0.1, verbose=1, batch_size=8)

Dimensions:

(1000, 128, 8) - input (1000 audio, 8 features, 128 seq_length)

(1000, 10) - target (1000 audio, 10 classes)


Solution

  • I think there are two edits required:

    1. Add InputLayer as entrance for the data
    2. Define compute_output_shape method at least for Pooling layer (link). If this method is not defined, Dense layer can't figure out what's input shape for it, I guess, and then fails.

    Also there's minor editing - since model have InputLayer, you need no more input_shape kwarg in Residual layer.

    class Residual(Layer):
        def __init__(self, **kwargs):  # remove input shape
            super(Residual, self).__init__(**kwargs)
    
        def call(self, x):
            print(np.shape(x))
            first_layer = Conv1D(256, 4, activation='relu')(x)
            print(np.shape(first_layer))    
            x = Conv1D(256, 4, activation='relu')(first_layer)
            print(np.shape(x)) 
            x = Conv1D(256, 4, activation='relu')(x)
            print(np.shape(x)) 
            x = ZeroPadding1D(padding=3)(x)
            residual = Add()([x, first_layer])
            x = Activation("relu")(residual)
            return x
    
    
    class Pooling(Layer):
        def __init__(self, **kwargs):
            super(Pooling, self).__init__(**kwargs)
    
        def call(self, x):
            # !!! I build model without data_format argument - my version of keras
            # doesn't support it !!!
            first_layer = GlobalMaxPooling1D(data_format='channels_last')(x)  
            second_layer = GlobalAveragePooling1D(data_format='channels_last')(x)
            pooling = Add()([first_layer, second_layer])
            print(np.shape(pooling)) 
            self.output_dim = int(np.shape(pooling)[-1])  # save output shape
            return pooling
    
        def compute_output_shape(self, input_shape):
            # compute output shape here
            return (input_shape[0], self.output_dim)  
    

    Initialize model:

    model = Sequential()
    model.add(InputLayer((128,8)))
    model.add(Residual())
    model.add(Pooling())
    model.add(Dense(300, activation='relu'))
    model.add(Dense(150, activation='relu'))
    model.add(Dense(10, activation='softmax'))
    model.compile(loss='categorical_crossentropy', 
                  optimizer=keras.optimizers.Adadelta(), 
                  metrics=['accuracy'])
    
    Out:
    (?, 128, 8)
    (?, 125, 256)
    (?, 122, 256)
    (?, 119, 256)
    (?, 256)
    

    Summary of the model (don't know why Residual and Pooling don't show params the have. I guess some additional method required for this classes to count internal params):

    model.summary()
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    residual_10 (Residual)       (None, 128, 8)            0         
    _________________________________________________________________
    pooling_8 (Pooling)          (None, 256)               0         
    _________________________________________________________________
    dense_15 (Dense)             (None, 300)               77100     
    _________________________________________________________________
    dense_16 (Dense)             (None, 150)               45150     
    _________________________________________________________________
    dense_17 (Dense)             (None, 10)                1510      
    =================================================================
    Total params: 123,760
    Trainable params: 123,760
    Non-trainable params: 0
    _________________________________________________________________
    

    Create fake data and check training process:

    dataset_data = np.random.randn(1000, 128, 8)
    dataset_target = np.zeros((1000, 10))
    dataset_target[:, 0] = 1
    model.fit(np.array(dataset_data), dataset_target, epochs=1000,
              validation_split=0.1, verbose=1, batch_size=8)
    Train on 900 samples, validate on 100 samples
    Epoch 1/1000
    900/900 [==============================] - 2s 2ms/step - loss: 0.0235 - acc: 0.9911 - val_loss: 9.4426e-05 - val_acc: 1.0000
    Epoch 2/1000
    900/900 [==============================] - 1s 1ms/step - loss: 4.2552e-05 - acc: 1.0000 - val_loss: 1.7458e-05 - val_acc: 1.0000
    Epoch 3/1000
    900/900 [==============================] - 1s 1ms/step - loss: 1.1342e-05 - acc: 1.0000 - val_loss: 7.3141e-06 - val_acc: 1.0000
    ... and so on
    

    Looks like it works.