Search code examples
cmultithreadingthread-priority

Priority based multithreading?


I have written code for two threads where is one is assigned priority 20 (lower) and another on 10 (higher). Upon executing my code, 70% of the time I get expected results i.e high_prio (With priority 10) thread executes first and then low_prio (With priority 20).

Why is my code not able to get 100 % correct result in all the executions? Is there any conceptual mistake that I am doing?

void *low_prio(){
    Something here;
}

void *high_prio(){
    Something here;
}

int main(){

    Thread with priority 10 calls high_prio;
    Thread with priority 20 calls low_prio;

    return 0;
}

Solution

  • Is there any conceptual mistake that I am doing?

    Yes — you have an incorrect expectation regarding what thread priorities do. Thread priorities are not meant to force one thread to execute before another thread.

    In fact, in a scenario where there is no CPU contention (i.e. where there are always at least as many CPU cores available as there are threads that currently want to execute), thread priorities will have no effect at all -- because there would be no benefit to forcing a low-priority thread not to run when there is a CPU core available for it to run on. In this no-contention scenario, all of the threads will get to run simultaneously and continuously for as long as they want to.

    The only time thread priorities may make a difference is when there is CPU contention -- i.e. there are more threads that want to run than there are CPU cores available to run them. At that point, the OS's thread-scheduler has to make a decision about which thread will get to run and which thread will have to wait for a while. In this instance, thread priorities can be used to indicate to the scheduler which thread it should prefer allow to run.

    Note that it's even more complicated than that, however -- for example, in your posted program, both of your threads are calling printf() rather a lot, and printf() invokes I/O, which means that the thread may be temporarily put to sleep while the I/O (e.g. to your Terminal window, or to a file if you have redirected stdout to file) completes. And while that thread is sleeping, the thread-scheduler can take advantage of the now-available CPU core to let another thread run, even if that other thread is of lower priority. Later, when the I/O operation completes, your high-priority thread will be re-awoken and re-assigned to a CPU core (possibly "bumping" a low-priority thread off of that core in order to get it).

    Note that inconsistent results are normal for multithreaded programs -- threads are inherently non-deterministic, since their execution patterns are determined by the thread-scheduler's decisions, which in turn are determined by lots of factors (e.g. what other programs are running on the computer at the time, the system clock's granularity, etc).