I'm training doc2vec, and using callbacks trying to see if alpha is decreasing over training time using this code:
class EpochSaver(CallbackAny2Vec):
'''Callback to save model after each epoch.'''
def __init__(self, path_prefix):
self.path_prefix = path_prefix
self.epoch = 0
os.makedirs(self.path_prefix, exist_ok=True)
def on_epoch_end(self, model):
savepath = get_tmpfile(
'{}_epoch{}.model'.format(self.path_prefix, self.epoch)
)
model.save(savepath)
print(
"Model alpha: {}".format(model.alpha),
"Model min_alpha: {}".format(model.min_alpha),
"Epoch saved: {}".format(self.epoch + 1),
"Start next epoch"
)
self.epoch += 1
def train():
workers = multiprocessing.cpu_count()*4
model = Doc2Vec(
DocIter(),
vec_size=600, alpha=0.03, min_alpha=0.00025, epochs=20,
min_count=10, dm=1, hs=1, negative=0, workers=workers,
callbacks=[EpochSaver("./checkpoints")]
)
print(
"HS", model.hs, "Negative", model.negative, "Epochs",
model.epochs, "Workers: ", model.workers, "Model alpha:
{}".format(model.alpha)
)
And while training I see that alpha is not changing over time. On each callback I see alpha = 0.03.
Is it possible to check if alpha is decreasing? Or it really not decreasing at all during training?
One more question: How can I benefit from all my cores while training doc2vec?
As we can see, each core is not loaded more than +-30%.
The model.alpha
property only holds the initially-configured starting-alpha
– it's not updated to the effective learning-rate through training.
So, even if the value is being decreased properly (and I expect that it is), you wouldn't see it in the logging you've added.
Separate observations about your code:
in gensim versions at least through 3.5.0, maximum training throughput is most often reached with some value for workers
between 3 and the number of cores – but usually not the full number of cores (if it's higher than 12) or larger. So workers=multiprocessing.cpu_count()*4
is likely going to much slower than what you could achieve with a lower number.
if your corpus is large enough to support 600-dimensional vectors, and discarding words with fewer than min_count=10
examples, negative sampling may work faster and get better results than the hs
mode. (The pattern in published work seems to be to prefer negative-sampling with larger corpuses.)