I'm implementing variable lenght encoding and reading wikipedia about it. Here is what I found:
0x00000080 0x81 0x00
It mean 0x80
int is encoded as 0x81 0x00
2 bytes. That what I cannot understand. Okay, following the algorithm listed there we have.
0x80
: 00000000 00000000 00000000 10000000
We move the sign bit to the next octet so we have and set to 1 (indicating that we have more octets):
00000000 00000000 00000001 10000000
which is not equals to 0x81 0x00
. I tried to write a program for that:
byte[] ba = new byte[]{(byte) 0x81, (byte) 0x00};
int first = (ba[0] & 0xFF) & 0x7F;
int second = ((ba[1] & 0xFF) & 0x7F) << 7;
int result = first | second;
System.out.println(result); //prints 1, not 0x80
What did I miss?
Let's review the algorithm from the Wikipedia page:
We can implement the algorithm like this:
public static byte[] variableLengthInteger(int input) {
// first find out how many bytes we need to represent the integer
int numBytes = ((32 - Integer.numberOfLeadingZeros(input)) + 6) / 7;
// if the integer is 0, we still need 1 byte
numBytes = numBytes > 0 ? numBytes : 1;
byte[] output = new byte[numBytes];
// for each byte of output ...
for(int i = 0; i < numBytes; i++) {
// ... take the least significant 7 bits of input and set the MSB to 1 ...
output[i] = (byte) ((input & 0b1111111) | 0b10000000);
// ... shift the input right by 7 places, discarding the 7 bits we just used
input >>= 7;
}
// finally reset the MSB on the last byte
output[0] &= 0b01111111;
return output;
}
You can see it working for the examples from the Wikipedia page here, you can also plug in your own values and try it online.