Is it possible to construct a "simple" fixed rolling window? Say I have the following dataset:
Apple Microsoft Tesla Amazon
2010 0.8533719 0.8078440 0.2620114 0.1869552
2011 0.7462573 0.5127501 0.5452448 0.1369686
2012 0.7580671 0.5062639 0.7847919 0.8362821
2013 0.3154078 0.6960258 0.7303597 0.6057027
2014 0.4741735 0.3906580 0.4515726 0.1396147
2015 0.4230036 0.4728911 0.1262413 0.7495193
2016 0.2396552 0.5001825 0.6732861 0.8535837
2017 0.2007575 0.8875209 0.5086837 0.2211072
#I want to be able to produce the following result
s.matrix <- x[1:4,]
#For the next period, I want to drop the first period and add the next period:
s.matrix <- x[2:5,]
#For the rest of the dataset it should be:
x[3:6,], x[4:7,], x[5:8,]
#That is, the width should always be equal to four.
I know that lapply is able to do something similar, but then I have to set a fixed value such that it only adds the new variables to an already existing matrix without removing the first observation....or am I wrong?
Assuming x
is a data.frame as in the Note at the end, use rollapply
to get the desired indexes and apply
to generate the corresponding list of data frames.
library(zoo)
apply(rollapply(1:nrow(x), 4, c), 1, function(ix) x[ix, ])
giving:
[[1]]
Apple Microsoft Tesla Amazon
2010 0.85337 0.80784 0.26201 0.18696
2011 0.74626 0.51275 0.54524 0.13697
2012 0.75807 0.50626 0.78479 0.83628
2013 0.31541 0.69603 0.73036 0.60570
[[2]]
Apple Microsoft Tesla Amazon
2011 0.74626 0.51275 0.54524 0.13697
2012 0.75807 0.50626 0.78479 0.83628
2013 0.31541 0.69603 0.73036 0.60570
2014 0.47417 0.39066 0.45157 0.13961
[[3]]
Apple Microsoft Tesla Amazon
2012 0.75807 0.50626 0.78479 0.83628
2013 0.31541 0.69603 0.73036 0.60570
2014 0.47417 0.39066 0.45157 0.13961
2015 0.42300 0.47289 0.12624 0.74952
[[4]]
Apple Microsoft Tesla Amazon
2013 0.31541 0.69603 0.73036 0.60570
2014 0.47417 0.39066 0.45157 0.13961
2015 0.42300 0.47289 0.12624 0.74952
2016 0.23966 0.50018 0.67329 0.85358
[[5]]
Apple Microsoft Tesla Amazon
2014 0.47417 0.39066 0.45157 0.13961
2015 0.42300 0.47289 0.12624 0.74952
2016 0.23966 0.50018 0.67329 0.85358
2017 0.20076 0.88752 0.50868 0.22111
We used this for x
:
Lines <- " Apple Microsoft Tesla Amazon
2010 0.8533719 0.8078440 0.2620114 0.1869552
2011 0.7462573 0.5127501 0.5452448 0.1369686
2012 0.7580671 0.5062639 0.7847919 0.8362821
2013 0.3154078 0.6960258 0.7303597 0.6057027
2014 0.4741735 0.3906580 0.4515726 0.1396147
2015 0.4230036 0.4728911 0.1262413 0.7495193
2016 0.2396552 0.5001825 0.6732861 0.8535837
2017 0.2007575 0.8875209 0.5086837 0.2211072"
x <- read.table(text = Lines)