I want to write a program that makes use of Newtons Method:
To estimate the x of this integral:
Where X is the total distance.
I have functions to calculate the Time it takes to arrive at a certain distance by using the trapezoid method for numerical integration. Without using trapz.
function T = time_to_destination(x, route, n)
h=(x-0)/n;
dx = 0:h:x;
y = (1./(velocity(dx,route)));
Xk = dx(2:end)-dx(1:end-1);
Yk = y(2:end)+y(1:end-1);
T = 0.5*sum(Xk.*Yk);
end
and it fetches its values for velocity, through ppval of a cubic spline interpolation between a set of data points. Where extrapolated values should not be fetcheable.
function [v] = velocity(x, route)
load(route);
if all(x >= distance_km(1))==1 & all(x <= distance_km(end))==1
estimation = spline(distance_km, speed_kmph);
v = ppval(estimation, x);
else
error('Bad input, please choose a new value')
end
end
Plot of the velocity spline if that's interesting to you evaluated at:
dx= 1:0.1:65
Now I want to write a function that can solve for distance travelled after a certain given time, using newton's method without fzero / fsolve . But I have no idea how to solve for the upper bound of a integral.
According to the fundamental theorem of calculus I suppose the derivative of the integral is the function inside the integral, which is what I've tried to recreate as Time_to_destination / (1/velocity) I added the constant I want to solve for to time to destination so its
(Time_to_destination - (input time)) / (1/velocity)
Not sure if I'm doing that right.
EDIT: Rewrote my code, works better now but my stopcondition for Newton Raphson doesnt seem to converge to zero. I also tried to implement the error from the trapezoid integration ( ET ) but not sure if I should bother implementing that yet. Also find the route file in the bottom.
Stop condition and error calculation of Newton's Method:
Error estimation of trapezoid:
Function x = distance(T, route)
n=180
route='test.mat'
dGuess1 = 50;
dDistance = T;
i = 1;
condition = inf;
while condition >= 1e-4 && 300 >= i
i = i + 1 ;
dGuess2 = dGuess1 - (((time_to_destination(dGuess1, route,n))-dDistance)/(1/(velocity(dGuess1, route))))
if i >= 2
ET =(time_to_destination(dGuess1, route, n/2) - time_to_destination(dGuess1, route, n))/3;
condition = abs(dGuess2 - dGuess1)+ abs(ET);
end
dGuess1 = dGuess2;
end
x = dGuess2
Route file: https://drive.google.com/open?id=18GBhlkh5ZND1Ejh0Muyt1aMyK4E2XL3C
Observe that the Newton-Raphson method determines the roots of the function. I.e. you need to have a function f(x) such that f(x)=0 at the desired solution.
In this case you can define f as
f(x) = Time(x) - t
where t is the desired time. Then by the second fundamental theorem of calculus
f'(x) = 1/Velocity(x)
With these functions defined the implementation becomes quite straightforward!
First, we define a simple Newton-Raphson function which takes anonymous functions as arguments (f and f') as well as an initial guess x0.
function x = newton_method(f, df, x0)
MAX_ITER = 100;
EPSILON = 1e-5;
x = x0;
fx = f(x);
iter = 0;
while abs(fx) > EPSILON && iter <= MAX_ITER
x = x - fx / df(x);
fx = f(x);
iter = iter + 1;
end
end
Then we can invoke our function as follows
t_given = 0.3; % e.g. we want to determine distance after 0.3 hours.
n = 180;
route = 'test.mat';
f = @(x) time_to_destination(x, route, n) - t_given;
df = @(x) 1/velocity(x, route);
distance_guess = 50;
distance = newton_method(f, df, distance_guess);
Result
>> distance
distance = 25.5877
Also, I rewrote your time_to_destination
and velocity
functions as follows. This version of time_to_destination
uses all the available data to make a more accurate estimate of the integral. Using these functions the method seems to converge faster.
function t = time_to_destination(x, d, v)
% x is scalar value of destination distance
% d and v are arrays containing measured distance and velocity
% Assumes d is strictly increasing and d(1) <= x <= d(end)
idx = d < x;
if ~any(idx)
t = 0;
return;
end
v1 = interp1(d, v, x);
t = trapz([d(idx); x], 1./[v(idx); v1]);
end
function v = velocity(x, d, v)
v = interp1(d, v, x);
end
Using these new functions requires that the definitions of the anonymous functions are changed slightly.
t_given = 0.3; % e.g. we want to determine distance after 0.3 hours.
load('test.mat');
f = @(x) time_to_destination(x, distance_km, speed_kmph) - t_given;
df = @(x) 1/velocity(x, distance_km, speed_kmph);
distance_guess = 50;
distance = newton_method(f, df, distance_guess);
Because the integral is estimated more accurately the solution is slightly different
>> distance
distance = 25.7771
Edit
The updated stopping condition can be implemented as a slight modification to the newton_method
function. We shouldn't expect the trapezoid rule error to go to zero so I omit that.
function x = newton_method(f, df, x0)
MAX_ITER = 100;
TOL = 1e-5;
x = x0;
iter = 0;
dx = inf;
while dx > TOL && iter <= MAX_ITER
x_prev = x;
x = x - f(x) / df(x);
dx = abs(x - x_prev);
iter = iter + 1;
end
end
To check our answer we can plot the time vs. distance and make sure our estimate falls on the curve.
...
distance = newton_method(f, df, distance_guess);
load('test.mat');
t = zeros(size(distance_km));
for idx = 1:numel(distance_km)
t(idx) = time_to_destination(distance_km(idx), distance_km, speed_kmph);
end
plot(t, distance_km); hold on;
plot([t(1) t(end)], [distance distance], 'r');
plot([t_given t_given], [distance_km(1) distance_km(end)], 'r');
xlabel('time');
ylabel('distance');
axis tight;