I'm building a simple neural network that takes 3 values and gives 2 outputs.
I'm getting an accuracy of 67.5% and an average cost of 0.05
I have a training dataset of 1000 examples and 500 testing examples. I plan on making a larger dataset in the near future.
A little while ago I managed to get an accuracy of about 82% and sometimes a bit higher, but the cost was quite high.
I've been experimenting with adding another layer which is currently in the model and that is the reason I have got the loss under 1.0
I'm not sure what is going wrong, I'm new to Tensorflow and NNs in general.
Here is my code:
import tensorflow as tf
import numpy as np
import sys
sys.path.insert(0, '.../Dataset/Testing/')
sys.path.insert(0, '.../Dataset/Training/')
#other files
from TestDataNormaliser import *
from TrainDataNormaliser import *
learning_rate = 0.01
trainingIteration = 10
batchSize = 100
displayStep = 1
x = tf.placeholder("float", [None, 3])
y = tf.placeholder("float", [None, 2])
#layer 1
w1 = tf.Variable(tf.truncated_normal([3, 4], stddev=0.1))
b1 = tf.Variable(tf.zeros([4]))
y1 = tf.matmul(x, w1) + b1
#layer 2
w2 = tf.Variable(tf.truncated_normal([4, 4], stddev=0.1))
b2 = tf.Variable(tf.zeros([4]))
#y2 = tf.nn.sigmoid(tf.matmul(y1, w2) + b2)
y2 = tf.matmul(y1, w2) + b2
w3 = tf.Variable(tf.truncated_normal([4, 2], stddev=0.1))
b3 = tf.Variable(tf.zeros([2]))
y3 = tf.nn.sigmoid(tf.matmul(y2, w3) + b3) #sigmoid
#output
#wO = tf.Variable(tf.truncated_normal([2, 2], stddev=0.1))
#bO = tf.Variable(tf.zeros([2]))
a = y3 #tf.nn.softmax(tf.matmul(y2, wO) + bO) #y2
a_ = tf.placeholder("float", [None, 2])
#cost function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(a)))
#cross_entropy = -tf.reduce_sum(y*tf.log(a))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
#training
init = tf.global_variables_initializer() #initialises tensorflow
with tf.Session() as sess:
sess.run(init) #runs the initialiser
writer = tf.summary.FileWriter(".../Logs")
writer.add_graph(sess.graph)
merged_summary = tf.summary.merge_all()
for iteration in range(trainingIteration):
avg_cost = 0
totalBatch = int(len(trainArrayValues)/batchSize) #1000/100
#totalBatch = 10
for i in range(batchSize):
start = i
end = i + batchSize #100
xBatch = trainArrayValues[start:end]
yBatch = trainArrayLabels[start:end]
#feeding training data
sess.run(optimizer, feed_dict={x: xBatch, y: yBatch})
i += batchSize
avg_cost += sess.run(cross_entropy, feed_dict={x: xBatch, y: yBatch})/totalBatch
if iteration % displayStep == 0:
print("Iteration:", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))
#
print("Training complete")
predictions = tf.equal(tf.argmax(a, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(predictions, "float"))
print("Accuracy:", accuracy.eval({x: testArrayValues, y: testArrayLabels}))
A few important notes:
When it comes to writing clean, maintainable code, I'd also encourage you to consider the following:
For graph construction:
def get_logits(features):
"""tf.layers API is cleaner and has better default values."""
# #layer 1
# w1 = tf.Variable(tf.truncated_normal([3, 4], stddev=0.1))
# b1 = tf.Variable(tf.zeros([4]))
# y1 = tf.matmul(x, w1) + b1
x = tf.layers.dense(features, 4, activation=tf.nn.relu)
# #layer 2
# w2 = tf.Variable(tf.truncated_normal([4, 4], stddev=0.1))
# b2 = tf.Variable(tf.zeros([4]))
# y2 = tf.matmul(y1, w2) + b2
x = tf.layers.dense(x, 4, activation=tf.nn.relu)
# w3 = tf.Variable(tf.truncated_normal([4, 2], stddev=0.1))
# b3 = tf.Variable(tf.zeros([2]))
# y3 = tf.nn.sigmoid(tf.matmul(y2, w3) + b3) #sigmoid
# N.B Don't take a non-linearity here.
logits = tf.layers.dense(x, 1, actiation=None)
# remove unnecessary final dimension, batch_size * 1 -> batch_size
logits = tf.squeeze(logits, axis=-1)
return logits
def get_loss(logits, labels):
"""tf.nn.sigmoid_cross_entropy_with_logits is numerically stable."""
# #cost function
# cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(a)))
return tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits, labels=labels)
def get_train_op(loss):
"""There are better options than standard SGD. Try the following."""
learning_rate = 1e-3
# optimizer = tf.train.GradientDescentOptimizer(learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate)
# optimizer = tf.train.AdamOptimizer(learning_rate)
return optimizer.minimize(loss)
def get_inputs(feature_data, label_data, batch_size, n_epochs=None,
shuffle=True):
"""
Get features and labels for training/evaluation.
Args:
feature_data: numpy array of feature data.
label_data: numpy array of label data
batch_size: size of batch to be returned
n_epochs: number of epochs to train for. None will result in repeating
forever/until stopped
shuffle: bool flag indicating whether or not to shuffle.
"""
dataset = tf.data.Dataset.from_tensor_slices(
(feature_data, label_data))
dataset = dataset.repeat(n_epochs)
if shuffle:
dataset = dataset.shuffle(len(feature_data))
dataset = dataset.batch(batch_size)
features, labels = dataset.make_one_shot_iterator().get_next()
return features, labels
For session running you could use this like you have (what I'd call 'the hard way')...
features, labels = get_inputs(
trainArrayValues, trainArrayLabels, batchSize, n_epochs, shuffle=True)
logits = get_logits(features)
loss = get_loss(logits, labels)
train_op = get_train_op(loss)
init = tf.global_variables_initializer()
# monitored sessions have the `should_stop` method, which works with datasets
with tf.train.MonitoredSession() as sess:
sess.run(init)
while not sess.should_stop():
# get both loss and optimizer step in the same session run
loss_val, _ = sess.run([loss, train_op])
print(loss_val)
# save variables etc, do evaluation in another graph with different inputs?
but I think you're better off using a tf.estimator.Estimator, though some people prefer tf.keras.Models.
def model_fn(features, labels, mode):
logits = get_logits(features)
loss = get_loss(logits, labels)
train_op = get_train_op(loss)
predictions = tf.greater(logits, 0)
accuracy = tf.metrics.accuracy(labels, predictions)
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, train_op=train_op,
eval_metric_ops={'accuracy': accuracy}, predictions=predictions)
def train_input_fn():
return get_inputs(trainArrayValues, trainArrayLabels, batchSize)
def eval_input_fn():
return get_inputs(
testArrayValues, testArrayLabels, batchSize, n_epochs=1, shuffle=False)
# Where variables and summaries will be saved to
model_dir = './model'
estimator = tf.estimator.Estimator(model_fn, model_dir)
estimator.train(train_input_fn, max_steps=max_steps)
estimator.evaluate(eval_input_fn)
Note if you use estimators the variables will be saved after training, so you won't need to re-train each time. If you want to reset, just delete the model_dir.