I'm learning C programming and made the algorithm below to solve this problem:
The code actually works, but initially the loop was with only 10 repetitions (rep <= 10), and the anwer for p = 3 was almost correct, so I changed rep <= 20. And It gave me just the exact answer from my calculator. And then I tried with a higher number, 12, and the output again was inaccurate. So I ended raising rep <= 35. If I get the loop for higher repetitions I get "-nan", and if the input for p is too high it will be the same. So just have to see the pattern to know that the problem of inaccuracy will get back as I input higher numbers which is not the case because the output will be NaN if I input a high value.
Is it possible to solve it without higher level functions? just want to know if my program is ok for the level in which I am now...
#include <stdio.h>
int main()
{
float p; //the power for e
float power; //the copy of p for the loop
float e = 1; //the e number I wanna raise to the power of p
int x = 1; //the starting number for each factorial generation
float factorial = 1;
int rep = 1; //the repeater for the loop
printf( "Enter the power you want to raise: " );
scanf( "%f", &p );
power = p;
while ( rep <= 35) {
while ( x > 1) {
factorial *= x;
x--;
}
e += p / factorial;
//printf("\nthe value of p: %f", p); (TESTER)
//printf("\nthe value of factorial: %f", factorial); (TESTER)
p *= power; //the new value for p
rep++;
factorial = 1;
x = rep; //the new value for the next factorial to be generated
//printf("\n%f", e); (TESTER)
}
printf("%.3f", e);
return 0;
}
Sorry if I had syntax/orthography errors, I'm still learning the language.
Before we begin, let's write your original code as a function, with some clean-ups:
float exp_original(float x, int rep = 35)
{
float sum = 1.0f;
float power = 1.0f;
for (int i = 1; i <= rep; i++)
{
float factorial = 1.0f;
for (int j = 2; j <= i; j++)
factorial *= j;
power *= x;
sum += power / factorial;
}
return sum;
}
There were some unnecessary variables you used which were removed, but otherwise the procedure is the same: compute the factorial from scratch.
Let's look at the ratio between successive terms in the series:
We can thus simply multiply the current term by this expression to get the next term:
float exp_iterative(float x, int rep = 35)
{
float sum = 1.0f;
float term = 1.0f;
for (int i = 1; i <= rep; i++)
{
term *= x / i;
sum += term;
}
return sum;
}
Seems much simpler, but is it better? Comparison against the C-library exp
function (which we assume to be maximally precise):
x exp (C) exp_orig exp_iter
-------------------------------------------
1 2.7182817 2.718282 2.718282
2 7.3890562 7.3890567 7.3890567
3 20.085537 20.085539 20.085539
4 54.598148 54.598152 54.598152
5 148.41316 148.41318 148.41316
6 403.4288 403.42871 403.42877
7 1096.6332 1096.6334 1096.6334
8 2980.958 2980.9583 2980.9587
9 8103.084 8103.083 8103.083
10 22026.465 22026.467 22026.465
11 59874.141 59874.148 59874.152
12 162754.8 162754.77 162754.78
13 442413.41 -nan(ind) 442413.38
14 1202604.3 -nan(ind) 1202603.5
15 3269017.3 -nan(ind) 3269007.3
16 8886111 -nan(ind) 8886009
17 24154952 -nan(ind) 24153986
18 65659968 -nan(ind) 65652048
19 1.784823e+08 -nan(ind) 1.7842389e+08
20 4.8516518e+08 -nan(ind) 4.8477536e+08
The two custom implementations are neck-and-neck in-terms of precision, until x = 13
where the original gives NaN
. This is because the highest power term 13^35 = 9.7278604e+38
exceeds the maximum value FLT_MAX = 3.40282e+38
. The accumulated term in the iterative version never reaches anywhere near the limit.