Search code examples
pandasmelt

melt multiple columns in a dataframe


Suppose I have the following dataframe: enter image description here

What I want is process the dataframe to the following form:

enter image description here

I tried pd.melt function but unfortunately it just does really poor job with multiple columns melting. Any idea please?

Regards


Solution

  • Copy all columns names to each row and last add new column Qte:

    df1 = df.set_index('Date')
    df2 = pd.DataFrame(np.broadcast_to(df1.columns.values, df1.shape), index=df1.index)
    df2 = df2.rename(columns=lambda x: 'Crit{}'.format(x+1)).assign(Qte=df1.iloc[:, -1])
    print (df2)
            Crit1 Crit2 Crit3 Crit4  Qte
    Date                                
    2016-06    XX    YY    ZZ    FF  100
    2016-07    XX    YY    ZZ    FF  300
    2019-08    XX    YY    ZZ    FF  400
    

    Timings:

    N = 1000
    a = np.random.randint(100, size=N)
    df = pd.DataFrame({'FF':a, 'YY':a,'ZZ':a, 'XX':a}, index=pd.date_range('2000-01-01', periods=N, freq='M').to_period('M'))
    df = df.reset_index().rename(columns={'index':'Date'})
    print (df.head())
         Date  FF  XX  YY  ZZ
    0 2000-01  49  49  49  49
    1 2000-02  50  50  50  50
    2 2000-03  72  72  72  72
    3 2000-04  81  81  81  81
    4 2000-05  29  29  29  29
    
    In [165]: %%timeit
         ...: (df.set_index(['Date'])
         ...:   .stack()
         ...:   .reset_index(-1)
         ...:   .groupby('Date')
         ...:   .apply(lambda x: pd.concat([pd.Series(x.level_1.values),pd.Series(x[0].unique()[0])]))
         ...:   .set_axis(['Crit1','Crit2','Crit3','Crit4','Qte'],axis=1, inplace=False))
         ...: 
    1 loop, best of 3: 904 ms per loop
    
    In [166]: %%timeit
         ...: df1 = df.set_index('Date')
         ...: pd.DataFrame(np.broadcast_to(df1.columns.values, df1.shape), index=df1.index).rename(columns=lambda x: 'Crit{}'.format(x+1)).assign(Qte=df1.iloc[:, -1])
         ...: 
         ...: 
    100 loops, best of 3: 2.89 ms per loop