The quaternion module of numpy can generate quaternion from sperical coordinates. Example:
theta = np.pi / 3.0
phi = np.pi / 3.0
qRot = q.from_spherical_coords(theta,phi)
qRot quaternion(0.75, -0.25, 0.433012701892219, 0.433012701892219)
This quaternion rotates Z axis to a unit vector V pointing to theta,phi coords. This quaternion does not produces a minimal rotation arc. The minimal rotation arc axis lies in the xy plane. Since the non minimal rotations moving Z to V are infinite, what is the underlying criteria that produces the quaternion qRot?
Thanks for any reply.
I assume you are using the numpy-quaternion
package.
In [2]: theta = np.pi / 3.0
...: phi = np.pi / 3.0
...:
The (theta, phi) quaternion can be composed from 2 quaternions, one the rotations about the y
axis (your previous question), and another about the z
axis:
In [3]: q1 = q.from_spherical_coords(theta,0)
In [4]: q1
Out[4]: quaternion(0.866025403784439, -0, 0.5, 0)
In [5]: q2 = q.from_spherical_coords(0,phi)
In [6]: q2
Out[6]: quaternion(0.866025403784439, -0, 0, 0.5)
In [7]: q12 = q.from_spherical_coords(theta,phi)
In [8]: q12
Out[8]: quaternion(0.75, -0.25, 0.433012701892219, 0.433012701892219)
In [9]: q1*q2
Out[9]: quaternion(0.75, 0.25, 0.433012701892219, 0.433012701892219)
It can also be composed of a sequence of smaller rotations
In [11]: qn = q12**.1
In [12]: qn
Out[12]: quaternion(0.997389412687609, -0.0272930118179609, 0.0472728831602861, 0.0472728831602861)
In [13]: qn*qn
Out[13]: quaternion(0.989571281082665, -0.0544435220551839, 0.0942989463425753, 0.0942989463425753)
In [14]: qn**10
Out[14]: quaternion(0.75, -0.25, 0.433012701892219, 0.433012701892219)
I'm guessing that what you call a minimal rotation arc
can be approximated by the rotations produced by such a sequence of small quaternions.
I don't understand why you claim this arc's 'axis lies in the xy plane'.
And rotating the unit Z axis:
In [17]: v=np.array([0,0,1])
In [23]: q.as_rotation_matrix(q1).dot(v)
Out[23]: array([0.8660254, 0. , 0.5 ])
In [24]: q.as_rotation_matrix(q2).dot(_)
Out[24]: array([0.4330127, 0.75 , 0.5 ])
In [25]: q.as_rotation_matrix(q12).dot(v)
Out[25]: array([0.4330127, 0.75 , 0.5 ])
Or as a sequence of qn
rotations:
In [26]: q.as_rotation_matrix(qn).dot(v)
Out[26]: array([0.09171851, 0.05891297, 0.99404073])
In [27]: q.as_rotation_matrix(qn**2).dot(v)
Out[27]: array([0.17636312, 0.12553607, 0.97628722])
In [28]: q.as_rotation_matrix(qn**3).dot(v)
Out[28]: array([0.25216838, 0.19847972, 0.94710977])
In [29]: q.as_rotation_matrix(qn**10).dot(v)
Out[29]: array([0.4330127, 0.75 , 0.5 ])
I'm still trying to figure out the best ways of doing calculations and rotations with this class. And periodically I'm getting a core dump, so it's probably not the most robust quaternion package for numpy
.
https://math.stackexchange.com/q/7187
My qn
powers produce the same quaternions as the slerp
function: q.slerp_evaluate(q1,q3,x)
https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp,
spherical linear interpolation, introduced by Ken Shoemake in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant-speed motion along a unit-radius great circle arc, given the ends and an interpolation parameter between 0 and 1.
I sort of stumbled on this by drawing on earlier reading on Geometric Algebra rotations, . It refers to constant-speed motion along a unit-radius great circle arc, given the ends and an interpolation parameter between 0 and 1.
I got tired of segmentation errors, and have switched to pyquaternion
. The documentation is better too.
http://kieranwynn.github.io/pyquaternion/
Defining a quaternion with the same (w,x,y,z) values:
In [10]: q=Quaternion(np.array([0.75, -0.25, 0.433012701892219, 0.433012701892219]))
In [13]: q.rotation_matrix
Out[13]:
array([[ 0.25 , -0.8660254, 0.4330127],
[ 0.4330127, 0.5 , 0.75 ],
[-0.8660254, -0. , 0.5 ]])
The rotation axis is:
In [16]: q.axis
Out[16]: array([-0.37796447, 0.65465367, 0.65465367])
This quaternion rotates the a unit vertical to:
In [17]: z=np.array([0,0,1])
In [18]: q.rotate(z)
Out[18]: array([0.4330127, 0.75 , 0.5 ]) # cf Out[25]
The q1
(In[3]) (previous question) is:
In [28]: a1 = np.array([0.866025403784439, -0, 0.5, 0])
In [29]: q1 = Quaternion(a1)
In [30]: q1.axis
Out[30]: array([0., 1., 0.])
In [31]: q1.degrees
Out[31]: 59.999999999999986
That is, a 60 degree rotation about the y
axis.
And a rotation arc can be calculated with:
In [32]: qn = q**.1
In [38]: np.array([(qn**n).rotate(z) for n in range(0,11)])
Out[38]:
array([[0. , 0. , 1. ],
[0.09171851, 0.05891297, 0.99404073],
[0.17636312, 0.12553607, 0.97628722],
[0.25216838, 0.19847972, 0.94710977],
[0.31755317, 0.27622248, 0.90711693],
[0.37115374, 0.35714286, 0.85714286],
[0.41185212, 0.43955305, 0.79822988],
[0.43879944, 0.52173419, 0.73160678],
[0.45143365, 0.6019722 , 0.65866314],
[0.44949123, 0.67859351, 0.58092037],
[0.4330127 , 0.75 , 0.5 ]])
Picturing this arc is a little tricky. The plane is perpendicular to q.axis
, but does not go through the (0,0,0) origin.