I am looking for a way to convert
Eigen::SparseMatrix< float> <-> cusp::hyb_matrix< int, float, cusp::host_memory>
back and forth.
The Eigen matrix is a result of a previous computation and I need a cusp::hyb_matrix to use the GPU for conjugate gradient computation later.
Thanks.
Well, I have found a workaround that does what needed but a more direct way is still missing.
Based on this example, i just needed to extract the rows/cols/coeffs vectors of values from the Eigen::SparseMatrix to construct a cusp::hyb_matrix. This can be done as follows :
void SparseMatrix2Coo(Eigen::SparseMatrix<float> Matrix, std::vector<int>& rows, std::vector<int>& cols, std::vector<float>& coeffs)
{
rows.clear();
cols.clear();
coeffs.clear();
for (int k=0; k < Matrix.outerSize(); ++k)
{
for (Eigen::SparseMatrix<float>::InnerIterator it(Matrix,k); it; ++it)
{
rows.push_back(it.row());
cols.push_back(it.col());
coeffs.push_back(Matrix.coeff(it.row(), it.col()));
}
}
assert(cols.size() == coeffs.size());
assert(rows.size() == cols.size());
}
Now, once we have rows/cols/coeffs, we just need to use those in the example above as inputs :
void computeConjugateGradientGPU(std::vector<int>& rows, std::vector<int>& cols, std::vector<float>& coeffs, std::vector<float>& b, Eigen::VectorXf& x)
{
int arrays_size = rows.size();
/// allocate device memory for CSR format
int * device_I;
cudaMalloc(&device_I, arrays_size * sizeof(int));
int * device_J;
cudaMalloc(&device_J, arrays_size * sizeof(int));
float * device_V;
cudaMalloc(&device_V, arrays_size * sizeof(float));
float * device_b;
cudaMalloc(&device_b, b.size() * sizeof(float));
/// copy raw data from host to device
cudaMemcpy(device_I, &cols[0], arrays_size * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(device_J, &rows[0], arrays_size * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(device_V, &coeffs[0], arrays_size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(device_b, &b[0], b.size() * sizeof(float), cudaMemcpyHostToDevice);
/// and the rest is the same...
}
The other way around is pretty obvious with the same logic.
Hope this helps someone.
Cheers.