How do you print a double to a stream so that when it is read in you don't lose precision?
I tried:
std::stringstream ss;
double v = 0.1 * 0.1;
ss << std::setprecision(std::numeric_limits<T>::digits10) << v << " ";
double u;
ss >> u;
std::cout << "precision " << ((u == v) ? "retained" : "lost") << std::endl;
This did not work as I expected.
But I can increase precision (which surprised me as I thought that digits10 was the maximum required).
ss << std::setprecision(std::numeric_limits<T>::digits10 + 2) << v << " ";
// ^^^^^^ +2
It has to do with the number of significant digits and the first two don't count in (0.01).
So has anybody looked at representing floating point numbers exactly? What is the exact magical incantation on the stream I need to do?
After some experimentation:
The trouble was with my original version. There were non-significant digits in the string after the decimal point that affected the accuracy.
So to compensate for this we can use scientific notation to compensate:
ss << std::scientific
<< std::setprecision(std::numeric_limits<double>::digits10 + 1)
<< v;
This still does not explain the need for the +1 though.
Also if I print out the number with more precision I get more precision printed out!
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10) << v << "\n";
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10 + 1) << v << "\n";
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits) << v << "\n";
It results in:
1.000000000000000e-02
1.0000000000000002e-02
1.00000000000000019428902930940239457413554200000000000e-02
Based on @Stephen Canon answer below:
We can print out exactly by using the printf() formatter, "%a" or "%A". To achieve this in C++ we need to use the fixed and scientific manipulators (see n3225: 22.4.2.2.2p5 Table 88)
std::cout.flags(std::ios_base::fixed | std::ios_base::scientific);
std::cout << v;
For now I have defined:
template<typename T>
std::ostream& precise(std::ostream& stream)
{
std::cout.flags(std::ios_base::fixed | std::ios_base::scientific);
return stream;
}
std::ostream& preciselngd(std::ostream& stream){ return precise<long double>(stream);}
std::ostream& precisedbl(std::ostream& stream) { return precise<double>(stream);}
std::ostream& preciseflt(std::ostream& stream) { return precise<float>(stream);}
Next: How do we handle NaN/Inf?
Don't print floating-point values in decimal if you don't want to lose precision. Even if you print enough digits to represent the number exactly, not all implementations have correctly-rounded conversions to/from decimal strings over the entire floating-point range, so you may still lose precision.
Use hexadecimal floating point instead. In C:
printf("%a\n", yourNumber);
C++0x provides the hexfloat
manipulator for iostreams that does the same thing (on some platforms, using the std::hex
modifier has the same result, but this is not a portable assumption).
Using hex floating point is preferred for several reasons.
First, the printed value is always exact. No rounding occurs in writing or reading a value formatted in this way. Beyond the accuracy benefits, this means that reading and writing such values can be faster with a well tuned I/O library. They also require fewer digits to represent values exactly.