Search code examples
rcovariance

Time Series Covariance Matrix for multiple variables - R


I want to create a covariance matrix of time series data for the purpose of Monte Carlo simulation however this matrix is between multiple assets.

I.e. I not only want to know the covariance between X(t), X(t+1), ... , X(t+n) but also the covariances between X(t), Y(t), Y(t+1), etc.

Is there a simple way to generate a covariance matrix in R that is the covariance between every element in an dataframe?

Thanks


Solution

  • This produces the covariances up to nl lags:

    set.seed(123)
    c1 <- data.frame(matrix(rnorm(90),ncol=3))
    nl=2 # number of lags
    c1wlags=embed(as.matrix(c1),nl+1)
    nams=colnames(c1)
    ndfs=paste(rep(nams,nl),rep(1:nl,each=ncol(c1)),sep="t-")
    colnames(c1wlags)=c(nams,ndfs)
    cov(c1wlags)
    
    
    > cov(c1wlags)
                   X1          X2           X3       X1t-1       X2t-1        X3t-1       X1t-2       X2t-2       X3t-2
    X1     1.02206766 -0.13725252  0.153975857 -0.04152948  0.02664973 -0.123077418 -0.16800464  0.26851379 -0.25855822
    X2    -0.13725252  0.73845275 -0.213758648  0.09490394 -0.11391726 -0.032365562  0.01863737  0.02661447 -0.11817727
    X3     0.15397586 -0.21375865  0.797592802 -0.44057820  0.05532353 -0.007062553 -0.15315625  0.24462652 -0.19898668
    X1t-1 -0.04152948  0.09490394 -0.440578196  0.96044907 -0.13594448  0.101988693  0.01357564  0.02734684 -0.11077465
    X2t-1  0.02664973 -0.11391726  0.055323528 -0.13594448  0.74666015 -0.206596930  0.10511073 -0.11827071 -0.03883939
    X3t-1 -0.12307742 -0.03236556 -0.007062553  0.10198869 -0.20659693  0.758188218 -0.38571731  0.05271998 -0.00125309
    X1t-2 -0.16800464  0.01863737 -0.153156254  0.01357564  0.10511073 -0.385717313  0.92688519 -0.14256158  0.08240385
    X2t-2  0.26851379  0.02661447  0.244626522  0.02734684 -0.11827071  0.052719977 -0.14256158  0.74893806 -0.20346301
    X3t-2 -0.25855822 -0.11817727 -0.198986683 -0.11077465 -0.03883939 -0.001253090  0.08240385 -0.20346301  0.76041872