This is pretty much only for me to make sure, I got this right:
We have a large resource class implementing the IDisposal pattern. It should (by design) be implemented in a way, that enables it to get called more than one time (even if we try to call it exactly one time of course). We also implement a finalizer, which also calls the Dispose() method - just as backup. If called manually, Dispose() will also call GC.SuppressFinalize(this).
There are several examples of disposal patterns around. Most of them call GC.SuppressFinalize(this) at the end of the disposing code. Some claim, it would be better, to call it at the beginning of the Dispose() method, before any cleaning. Latter argue, this would make sure, the GC doesn't call the finalizer concurrently, while we are still cleaning up.
Question:
It seems, placing GC.SuppressFinalize at the beginning doesn't do any better? We still have a race condition, right? So is it true, that we rather should implement Dispose() in a thread safe way instead?
While it is sometimes possible for an object to be finalized while a seemingly-live reference exists, that can only happen when nothing else is going to ever refer to the object. The GC.SuppressFinalize(this) actively refers to the present object 'this', thus guaranteeing that it will not be finalized until the GC.SuppressFinalize executes. Further, the fact that the object reference existed to dispose the object, and was available to the Dispose method, guarantees that the finalizer couldn't have been queued before Dispose started running unless the object was dead and a finalizer somewhere (either its own finalizer, or that of some other object) resurrected it.
Because there are some scenarios where an object could be scheduled for finalization and resurrected without ever being aware of it, it may not be a bad idea to protect a dispose and finalize against redundant operation. Microsoft's pattern is not a good one, however. Finalizable objects shouldn't hold references to any objects not needed for finalization. If an object would hold a mixture of managed and unmanaged resources, the unmanaged resources should be moved into their own classes (effectively turning them into managed resources), so then the main object would hold nothing but managed resources.