Consider the example data.frame
df <- data.frame(
id = 1:4,
name = c("Bob", "Ashley", "James", "David"),
age = c(48, NA, 40, 28),
test1_score = c(18.9, 19.5, NA, 12.9),
stringsAsFactors = FALSE)
I'm using the R package formattable to make a pretty table.
library(formattable)
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))
It used to be that NA's were automatically not printed, and a blank was printed instead. It seems like this is no longer the default, but I would still like to print a blank for the NA. Replacing NA like this works:
df[is.na(df)]=''
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))
However if I try to format one of the columns to force it to have 2 decimal places, the pesky NA's return:
df$age = digits(df$age, digits=2)
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))
If I remove the NA again, the NA goes away, but so do the decimal places
df[is.na(df)] = ''
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))
I believe the reason is that digits converts df$age
to a formattable numeric
object and creates the NA
, and df[is.na(df)] = ''
converts df$age
to a formattable character
object:
> df$age = digits(df$age, digits=2)
> df$age
[1] 48.00 NA 40.00 28.00
> class(df$age)
[1] "formattable" "numeric"
> df[is.na(df)] = ''
> df$age
[1] "48" " " "40" "28"
> class(df$age)
[1] "formattable" "character"
Any ideas on a solution?
Ultimately I'd also like to use this with a filtered data.frame, where I use the code from Filtering dataframes with formattable to ensure that the color scale stays the same when filtering the data.frame:
df$age = digits(df$age, digits=2)
subset_df <- function(m) {
formattable(df[m, ], list(
age = x ~ color_tile("white", "orange")(df$age)[m],
test1_score = x ~ color_bar("pink", 'proportion', 0.2)(df$test1_score)[m],
test2_score = x ~ color_bar("pink", 'proportion', 0.2)(df$test2_score)[m]
))
}
subset_df(1:3)
The problem doesn't seem to be with this code though.
You could use the sprintf
function to format the numeric columns as strings with the desired number of decimal places. In the code below, sprintf
converts NA
to the string "NA"
, which we then convert to an empty string.
# Function to convert numeric values to strings with a given number of
# decimal places, and convert NA to empty string
fnc = function(var, decimal.places) {
var = sprintf(paste0("%1.",decimal.places,"f"), var)
var[var=="NA"] = ""
var
}
# Select the columns we want to reformat
vars = c('age', 'test1_score')
# Apply the function to the desired columns with the desired number of decimal places
df[ , vars] = mapply(fnc, df[ ,vars], 2:3)
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))