I have a dataframe with 75 columns out of which 12 columns are having all NA's and some with 70% NA's. I want to delete columns having >=70% NA's.
Can anyone help me in this? I tried
df[,! apply( df , 2 , function(x) all(is.na(x)) )
but I am getting exception as:
Error: Unable to retreive a spark_connection from object of class NULL
I also tried:
df[colSums(!is.na(df)) != nrow(df)]
and
df[, colSums(is.na(df)) < nrow(df)]
But I am getting exception as
Error in colSums(!is.na(df)) : 'x' must be an array of at least two dimensions
It seems like a bit tricky in sparklyr
, but, we can get the index of the columns that needs to be removed from the local copy of dataset and use select
to remove those columns
j1 <- which(!colSums(!is.na(df)))
library(sparklyr)
sc <- spark_connect(master = "local")
df_tbl <- copy_to(sc, df)
library(dplyr)
df_tbl %>%
select(-j1)
# Source: query [20 x 2]
#Database: spark connection master=local[4] app=sparklyr #local=TRUE
# col2 col3
# <int> <dbl>
#1 1 -1.31690812
#2 1 0.59826911
#3 4 -0.76221437
#4 3 -1.42909030
#5 3 0.33224445
#6 5 -0.46906069
#7 1 -0.33498679
#8 4 1.53625216
#9 4 0.60999453
#10 1 0.51633570
#11 3 -0.07430856
#12 2 -0.60515695
#13 4 -1.70964518
#14 4 -0.26869311
#15 1 -0.64859151
#16 5 -0.09411013
#17 1 -0.08554095
#18 NA 0.11953107
#19 3 -0.11629639
#20 NA -0.94382724
set.seed(24)
df <- data.frame(col1 = NA_real_, col2 = sample(c(NA, 1:5), 20,
replace = TRUE), col3 = rnorm(20))